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An external electromagnetic (EM) wave excites charge cur­
rents which are particularly significant for metallic surfaces. 
The currents are generally spatially nonuniform and therefore 
lead to charge density oscillation at the same frequency as the 
incident field. This local charge density distribution deter­
mines the behavior of a wide variety of surface phenomena 

such as interface polariton transport, plasmonic field enhance­
ment, and nanoscale surface­enhanced Raman scattering 
[1]. However, it is difficult to obtain accurate information of 
these photo­induced charges with conventional finite element 
methods, especially for subwavelength objects with sharp 
boundaries.
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Abstract
Electromagnetic (EM) waves impinging on finite metallic structures can induce non­uniform 
electrical currents and create oscillating charge densities. These local charges govern the 
important physical processes such as plasmonic behavior or enhanced Raman scattering. Yet 
the quantitative calculation and probing of the spatial distribution of the charge density still 
remain challenging at the subwavelength scale. This is especially the case if one considers 
the boundary effect, where the charge density can become divergent and conventional finite 
element methods fail to obtain accurate information. With an approach we recently developed, 
we calculate this charge density for subwavelength structures with and without sharp corners: 
gold disks and equilateral triangles. We also devise an independent way to extract the surface 
charge density distributions from experiments using scattering­type scanning near­field optical 
microscope (s­SNOM). We found that the charge density σ is related to the near field signal 
Sn by σelement ∝ (Sn − 〈Sn〉)/〈Sn〉. With no adjustable parameters, the extracted surface charge 
distribution from the experiments matches well with that from the theoretical prediction, 
both in magnitude and phase. Our work provides a quantitative study of the surface charge 
distributions and a systematic and rigorous treatment to extract surface charge distributions at 
the nanoscale, opening opportunities for mining the near­field data from s­SNOM.
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In this paper, we address this problem both theoretically 
and experimentally and illustrate our ideas with the exam­
ples of subwavelength metal disks and metal triangles under 
external light illumination. In particular, using an approach we 
recently developed [2, 3], we obtain theoretically the charge 
densities induced by infrared light on subwavelength­sized 
metallic disks and equilateral triangles. For the disks, we 
find that the induced charge density is a sum of a bulk term 
and an edge term, with the latter localized near the circular 
perimeter of the disk. This differs from the results obtained in 
the case of electrostatics where the net current is zero inside 
the metallic element and all the charges are localized at the 
boundaries. For the triangles, we calculate the amplitude and 
phase of the induced charges and find charges with different 
signs at different corners. Experimentally, we devise a way to 
extract the charge distribution from near­field optical signals 
mapped with s­SNOM [4, 5]. With no adjustable parameters, 
the extracted surface charge distribution from the experiments 
matches well with that from the theoretical prediction.

Our results for the metallic structures with and without 
corners provide support that the local charge densities can be 
extracted for general metamaterial structures using s­SNOM 
data. We first discuss the calculation for the case of a metal­
lic disk with radius R in an external EM field. This is based 
on our recently developed rigorous first­principles circuit ele­
ment method [2]. In our formulation, the physical quantities 
are expressed not in a mesh but in terms of a complete ortho­
normal set of basis functions. The current density j is related 
to the external electric field Eext  by a circuit equation in terms 
of an impedance matrix Z which is just a representation of the 
Green’s function in our basis4:

j = Z−1(Eext + Es). (1)

Es is the field at the tip determined from the condition that the 
current induced by the external field outside of the tip is zero. 
Our approach provides a good physical understanding of the 
problem and is orders of magnitude faster than current numer­
ical approaches. From charge current conservation, the charge 
density σ/t for a film of thickness t is related to the current 
density as σ = t∇ · j/(iω). We find that the surface charge 
density σ is a sum of a bulk term and an edge term local­
ized near the circular perimeter of the disk. The bulk surface 
charge density is approximately proportional to σbulk(r) cosφ; 
the edge density, δ(r − R) cosφ. In electrostatics, the bulk 
density inside the disk is zero.

A two dimensional contour plot of the real part of the 
theoretical bulk charge density distribution of a form cosφ 
is shown in figure  1(b). This is comparable to the results 
extracted from experimental s­SNOM data in figure 1(a) for 
a disk of radius 0.53 µm and thickness 40 nm under incident 
light of wavelength 6 µm. We explain this next.

In s­SNOM [4, 5, 6], an electromagnetic (EM) wave is 
scattered from both the sample and the vibrating atomic force 
microscope (AFM) tip on top, as is illustrated in figure 2. The 
near­field tip­sample interactions with 10 nm spatial resolution 

is contained in the scattered field Sn demodulated at the higher 
harmonics (n = 2, 3, 4) of the tapping frequency Ω of the tip. 
s­SNOM has been employed to investigate a wide variety of 
phenomena such as mesoscale metal­insulator phase coexist­
ence [7–13] and surface polariton propagation [14–19], and 
metallic nanostructure­light interactions [20–24].

We recently investigated [25] the scattering of EM waves 
from the conical tip using an approach we developed [2, 3, 26]5.  
When compared with s­SNOM experimental results for the 
insulator SiO2, our previous calculation provides very good 
agreement. We found that an external field scatters from the 
tip and generates currents along it. For example, the experi­
ment described here was carried out at a wavelength of λ = 6 
µm, cone height, base and tip radii of 20 µm, 5 µm, and 10 nm, 
the tip vibration amplitude and minimum height are 60 nm and 
0.6 nm, the EM wave of amplitude Eext is coming in at an 
angle θ (see figure 1) of 60 degrees with respect to the sur­
face normal, we find that Es/Eext = −1.46 + 2.91i. The finite 
phase of Es comes from the radiation resistance of the conical 
tip. Our calculation directly relates the tip surface field to the 
incoming external field over the whole cone.

Associated with the tip field of the cone is a tip surface 
charge density σs which radiates at the frequencies modulated 
by the tapping frequency Ω and eventually leads to the exper­
imental signal. In the experiment, there can be other charges 
close to the tip. For example, the external EM field induce addi­
tional surface charge distribution σelement on the sample surface 
which is significant for metallic surfaces or when a resonance is 
excited (such as graphene plasmon) and cannot be simply omit­
ted. The tip charge density σs is determined from the condition 
that the field it generates at the tip, together with that from other 
charges close to the tip, is equal to the surface field Es.

In the absence of σelement the sum of the perpendicular 
comp onents of the displacement fields due to the tip and 
its image from the sample are continuous so that its change 
across the interface is zero: ∆(D⊥,img + D⊥,tip) = 0. Implicit 
in this is a surface bound charge −∇ · P from the polarization 
P induced by the tip charge on the sample surface a distance d 
away. For finite metallic or resonant elements [2] the external 
EM field also induces additional spatially varying charges of 
density σelement on the sample surface. When there are addi­
tional charges at the sample surface the boundary condition 
on the total displacement field D at the surface of the sample 
is changed to

∆D⊥ = σelement. (2)

When σelement is non zero, the total electric field is given by

Etot = Etip + Eimg + Eelement (3)

where Eelement is that due to σelement. The total field is the sum 
of the term due to the tip and its image charges and an addi­
tional term due to the surface charge on the element. Since 
∆Delement,⊥ = σelement, the boundary condition (2) for the 
total displacement field corresponding to Etot  is obeyed. The 
fields from the tip­induced charge density −∇ · P and that 
from the external field induced σelement simply add up because 

4 In practice we have done a two dimensional integral and have calculated a 
impedance Z′ = Zl.

5 The numerical values of these functions recently became available in 
Mathematica.
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Maxwell’s equations are linear. The field at the tip is now a 
sum of a field Esa from a conical surface charge of density σs 
at the tip, a field Esb from the image charge density and now an 
additional field Esc from charge density σelement:

Es = Esa + Esb + Esc. (4)

From Gauss’s law Esa = σs/2ε0, Esb ≈ −βσsI(2d)/ε0, βσs is 
the image charge, I is the Coulomb electric field of the image 
charge6. Similarly Esc = σelementK(d)/ε0

7,8. K is the Coulomb 
electric field of the element.

In our picture, the boundary electric field Es is such as 
to stop the current from going out. Its magnitude is deter­
mined by the incoming electromagnetic field averaged over 
the whole cone. The tip charge density is determined by the 
requirement that the electric field from it and all other charges 
close by is equal to the tip field. From equation (4), we get the 
charge density at the tip given by

σs = [2ε0Es − 2σelementK(d)]/[1 − 2βI(2d)]. (5)

As the surface charge density of the element is changed, 
the tip charge density also changes so that the value of Es 
is maintained. The tip is vibrating at a frequency Ω so that 
d ∝ (1 − cosΩt). The s­SNOM signal is proportional to the 
Fourier transform in time of this tip charge density and its 
image βσs at the nth higher harmonics of the tapping fre­
quency: Sn ∝ (1 + β)

∫
dtei(ω+nΩ)tσs. From equation (5) we 

get

Sn = A[B0n − σelementB1n/(2ε0Es)], (6)

A is a normalization constant, B1n = (1 + β)
∫

dteinΩtK
(d)/[1 − 2βI(2d)]. B0n = (1 + β)

∫
dteinΩt/[1 − 2βI(2d)]. 

The net charge on the disk is zero. Denoting the average 
over the disk by angular brackets, 〈σelement〉 = 0. Hence 
〈Sn〉 = AB0n. From equation (6) we finally obtain

σelement/σext = (Sn − 〈Sn〉)/〈Sn〉/rn (7)

where rn = B1n/B0n/(E2s/Eext) is a complex constant only 
determined by the microscope tip and independent of the 
samples. σext = ε0|Eext × ez|, ez  is a unit vector normal to 
the disk. All the spatial dependence of the charge density is 
contained in Sn/〈Sn〉 − 1. The phase difference between the 
exper imentally extracted signal and the charge density is inde­
pendent of the sample.

At the wavelengths of interest (1–10 µm) the dielectric con­
stant ε is large and negative, β ≈ 1 and does not change very 
much. B0n/B1n is relatively constant with a very weak depend­
ence on the frequency. The skin depth l = [2ρ/(ωµ0)]

1/2 = 11 
nm is less than the thickness of the disk. We have computed 
the Bs numerically. For β = 1. + 0.011i B12/B02 = 0.5464, 
B13/B03 = 0.4523. We thus get for n  =  3, the proportional factor  
in equation (7) given by

r2 = −0.075 − 0.15i r3 = −0.062 − 0.12i. (8)

To examine the quantitative values of the charge density 
in more detail, we show the real part of the charge density 
extracted from the experimental results along a diagonal in 
figure 3(a). Also shown is our theoretical result for the real 
part of the bulk charge density distribution which, in units of 

(a) (b)

Figure 1. (a) Experimental result for the real part of the amplitude of the two dimensional ‘charge density’ (S3 − 〈S3〉)/〈S3〉 on the disk. 
(b) Theoretical result for the amplitude of the two dimensional ‘bulk charge density’ 0.12Re[σbulk(r)] on the disk. The in plane component 
of the incident field is along the diagonal of this graph.

Figure 2. Schematics of the system under study: a metal conic 
AFM tip is vibrating above a gold disk of radius 530 nm. The 
system is under monochromatic illumination (red arrow) with 
a wavelength of 6 µm at an angle θ = 60◦ with respect to the 
surface normal. Also shown are the geometric parameters and the 
composition of the different electric fields, as is defined in the main 
text.

6 For elements in the shape of disks I(x) =
∫

dφ
∫ R2

0 r′dr′rdrEz(r, r′, 2x)/(πR2
2) 

Ez(r) = x[x2 + r2 + r′2 − 2rr′ cosφ]3/2/(2πb2). A factor of 2π from the 
angular integration is cancelled by a factor of 4π in the denominator from 
Gauss’ law; the factor of πb2 is from the averaging normalization.
7 K(x) =

∫
dφ

∫ R2

0 rdr
∫ Rdisk

0 σp(r′)r′dr′Ez(r, r′, x)/(πR2
2), In principle the 

upper limit of the r′ integral for K is R′ = Rdisk. But the large R′ contrib­
ution is insignificant. We have computed K numerically by doubling R′ until 
it changes by less than one percent.
8 The dielectric constant is ε/ε0 = 1 − ω2

p/(ω
2 + iγω). For Au, 

ωp = 1.37 × 1016 rad s−1, γ = 4.08 × 1013 rad s−1.

J. Phys.: Condens. Matter 31 (2019) 24LT01
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σext , is close to (S3/〈S3〉 − 1)/0.12. This is close to our theor­
etical result in equation (7) (r3 is evaluated in equation (8)) of 
Re(S3/〈S3〉 − 1)/0.124. Our result suggests that a small vari­
ation of the charge density is seen both in theory and experi­
ment and may not be a noise. We also find that the edge charge 
distribution is .44δ(r − R). Experimentally S3/〈S3〉 − 1 
exhibit a peak of an approximate area 0.08 at the boundary. 
Equation (8) suggests that the experimental estimate for the 
edge term should be 0.16δ(r − R). At the edge, the finite size 
of the tip creates more error in the interpretation of the exper­
imental data. Our result emphasizes the existence of an edge 
term, which has not been discussed before.

The comparison between theory and experiment involves 
a complex numerical constant rn described in equation  (7) 
which is a function of the AFM tip. The imaginary parts of 
S3/〈S3〉 − 1, and 0.12Im[r3]/Re[r3]σ

bulk/σext along the diago­
nal direction are shown in figure  3(b). In the region where 
there is not much fluctuation in the experimental results, the 
agreement between theory and experiment is good. The phase 
difference between theory and experiment come from the 
phase of rn. In comparing with the experimental measurement, 
the same multiplication factor for σbulk is used for both the 
real and the imaginary parts. There is no adjustable parameter 
for the phase. We next discuss the example of an equilateral 
triangle.

With a conformal harmonic mapping (Christofel–Schwarz 
transformation) between a point w = x + iy in a circle and a 
point z = u + iv in a triangle so that dz/dw ∝ (1 − w3)−2/3, 

(a) (b)

Figure 3. (a) Real part of the ‘charge density’ (S3 − 〈S3〉)/〈S3〉 along a diagonal of the disk (black solid line) and the theoretical estimate 
for the bulk contribution 0.12σbulk (red dashed line) in units of the σext sin θ. The blue dotted line corresponds to a simple theoretical 
approximation9. (b) Imaginary part of the ‘charge density’ (S3 − 〈S3〉)/〈S3〉 along a diagonal of the disk (black solid line) and the 
theoretical estimate for the bulk contribution 0.12Im[r3σ

bulk]/Re[r3]/(σext) (red solid square). Also shown is 0.12Im[r3]/Re[r3]σ
bulk/(σext) 

(red dashed line). To compare with the experimental measurement, there is very little difference in the results when the imaginary part of 
the theoretical charge density is not included (lines and symbols) because the theoretical imaginary part is small.

Figure 4. (a) The experimental result of the real part of the two dimensional ‘charge density’ (S2 − 〈S2〉)/〈S2〉 on an approximate 
equilateral triangle. (b) Theoretical result for the two dimensional ‘bulk charge density’ 0.1Re[σbulk(r)] on the equilateral triangle. The 
distance is in arbitrary units. The external field is along the x axis.

9 We find that [2] the lowest approximation for the radial dependence is 
J1(k1Dr), where k1D  =  1.84/R is determined from the condition that the  
derivative J′1(k1DR) = 0 at the boundary. This is illustrated by the blue  
dotted line in this figure.

J. Phys.: Condens. Matter 31 (2019) 24LT01
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we have recently extended the basis functions and our treat­
ment for the disk to that of triangles [3]. The new basis func­
tions inherited the integrable singularities at the corners from 
the mapping. With this approach, the charge density induced 
by an EM field is calculated. In figure 4 we compare the real 
part of the experimental result and and the theoretical charge 
densities for a gold equilateral triangle with sides of 2.6 µm 
in external electric field with an in plane component along 
the x axis. Our theoretical calculation for the real part of the 
bulk charge density distribution in units of σext  is approxi­
mately (S2/〈S2〉 − 1)/0.1. This is close to our result in equa­
tion (7) of Re(S2/〈S2〉 − 1)/0.15. For this experimental result 
the second harmonics with n  =  2 and not n  =  3 is used. 
Experimentally, it is difficult to align perfectly the external 
field with the symmetry axis of the sample. Aside from this 
asymmetry, the agreement supports our result in equation (2) 
that the charge density can be extracted from the s­SNOM 
data for different n. 

We close by discussing the separation of the bulk and the 
edge contributions for the disk from our numerical solution. The 
bulk charge contribution is given by σbulk = σ − σedge where 
the edge distribution σedge  is a δ function. These functions are 
all expanded in a Fourier–Bessel series. Consider the general 
series expansion of a function s(r) in terms of Bessel functions. 
For s(r) =

∑
i sigi(r) with gi = Jm(kir)/cim, the coefficients si 

are given by si =
∫

rdrs(r)gi(r). We found that higher order 
terms in the series for σ quickly approaches that for a δ func­
tion. If s(r) = Dδ(r − R), si = DRgi(R). For our case, only 
the m  =  1 terms are nonzero, si = DRJ1(kiR)/c1i. For large i 
si = D21/2(−1)i−1. In our calculation, the total charge density 
is a sum of  charge densities σext and σs induced by the electric 
fields Eext and Es in equation (1). In figure 5 we plotted the real 
and imaginary parts of (−1)i−1σext

i  and (−1)i−1σs
i . For large 

i, these coefficients all approach constants. From this, we find 
〈(σext

i + σs
i )(−1)i−1〉 = (−1.29, 0.13) where the average is 

taken over the values for i = 5, 6, 7, 8 We thus obtain the edge 
contribution σedge(r) = Dδ(r − R) with D  =  (−1.29,0.13)/21/2 
and the bulk contribution σbulk

i = σext
i + σs

i − D(−1)i−121/2.
In summary, we study the charge density distributions in 

finite metallic structures induced by an EM wave and found 

good agreement between theory and experiment. We theor­
etically prove the normalized near­field scattering signal of 
s­SNOM ((S3 − 〈S3〉)/〈S3〉) is proportional to the charge 
density of the metallic structure. In the end, we note that our 
previous work [25] is ideal for continuous films with intrin­
sically non­uniform dielectric properties. This work expands 
the rigorous calculation to subwavelength metal structures 
with otherwise intrinsically uniform dielectric properties. We 
have assumed that the intensity of the laser is small enough 
that there is no significant temperature rise in the sample and 
thus have not taken this effect into account theoretically. In 
the future, we will further discuss the data mining of s­SNOM 
in cases where the samples are highly anisotropic and have 
strong intrinsic EM resonances.
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