

1 **In-situ Observation of Silk Nanofibril Assembly via Graphene**
2 **plasmonic infrared sensor**

3 *Chenchen Wu^{1, 2, 3}, Yu Duan^{1, 2, 4}, Lintao Yu^{5, 6}, Yao Hu⁷, Chenxi Zhao^{5, 6}, Chunwang Ji^{1,}*
4 *Xiangdong Guo^{1, 2, 3, 8}, Shu Zhang^{1, 2, 3}, Xiaokang Dai^{1, 2, 3}, Puyi Ma^{1, 2, 3}, Qian*
5 *Wang^{7*}, Shengjie Ling^{5, 6*}, Xiaoxia Yang^{1, 2, 3*}, and Qing Dai^{1, 2, 3, 8*}*

6 ¹CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for
7 Nanoscience and Technology, Beijing 100190, China

8 ²CAS Key Laboratory of Standardization and Measurement for Nanotechnology,
9 National Center for Nanoscience and Technology, Beijing 100190, China

10 ³Center of Materials Science and Optoelectronics Engineering, University of Chinese
11 Academy of Sciences, Beijing 100049, China

12 ⁴Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001,
13 China

14 ⁵School of Physical Science and Technology, ShanghaiTech University, Shanghai
15 201210, China

16 ⁶Shanghai Clinical Research and Trial Center, Shanghai 201210, China

17 ⁷Department of Physics, University of Science and Technology of China, Hefei,
18 Anhui 230026, China

19 ⁸School of Materials Science and Engineering, Shanghai Jiao Tong University,
20 Shanghai, 200240, China

22 These authors contributed equally: Chenchen Wu, Yu Duan.

23 E-mail: daiq@nanoctr.cn, yangxx@nanoctr.cn, lingshj@shanghaitech.edu.cn,
24 wqq@ustc.edu.cn

27 **Abstract**

28 Silk nanofibrils (SNFs), the fundamental building blocks of silk fibers, endow them
29 with exceptional properties. However, the intricate mechanism governing SNF

30 assembly, a process involving both protein conformational transitions and protein
31 molecule conjunctions, remains elusive. This lack of understanding has hindered the
32 development of artificial silk spinning techniques. In this study, we address this
33 challenge by employing a graphene plasmonic infrared sensor in conjunction with
34 multi-scale molecular dynamics (MD). This unique approach allows us to probe the
35 secondary structure of nanoscale assembly intermediates (0.8 – 6.2 nm) and their
36 morphological evolution. It also provides insights into the dynamics of SF over
37 extended molecular timeframes. Our novel findings reveal that amorphous SFs
38 undergo a conformational transition towards β -sheet-rich oligomers on graphene.
39 These oligomers then connect to evolve into SNFs. These insights provide a
40 comprehensive picture of SNF assembly, paving the way for advancements in
41 biomimetic silk spinning.

42

43 **Introduction**

44 Silk fibers, derived from natural proteins, possess remarkable properties, including
45 outstanding mechanical strength, biocompatibility, and biodegradability^{7, 8}. These
46 features make them highly attractive for diverse applications such as flexible
47 brain–computer interfaces^{1, 2}, tissue engineering^{3, 4}, and wearable textiles^{5, 6}. Natural
48 silk spinning involves a complex assembly process where silk fibroins (SFs) first form
49 ordered silk nanofibrils (SNFs), which then organize into silk fibers with intricate
50 hierarchical structures. While artificial spinning methods try to mimic natural
51 conditions, the resulting regenerated silk often exhibits inferior mechanical properties
52 compared to natural silk⁹⁻¹². This disparity highlights the limitations in our current
53 understanding of SNF assembly^{13, 14}, hindering the development of biomimetic silk
54 fibers.

55 Researchers have utilized diverse methods to explore the assembly process of
56 SNFs. While simulation approaches have provided valuable insights into SNF
57 structure and assembly, they face limitations on the accuracy due to the extended time
58 scales and various length scales involved in the process¹⁷⁻¹⁹. For instance,
59 high-resolution simulation methods, such as all-atom molecular dynamics (MD)

60 simulations, demand significant computational resources, whereas simpler methods
61 like coarse-grained MD simulations have low resolution¹⁵. These highlight the need
62 for complementary experimental characterization techniques to bridge the gap and
63 achieve a comprehensive understanding of SNF assembly.

64 In experimental studies, researchers leverage a range of characterization
65 techniques, including X-ray diffraction¹⁶, scanning electron microscopy^{17, 18},
66 transmission electron microscopy¹⁹, and atomic force microscopy (AFM)²⁰. These
67 methods probe the micro/nano-structural properties of SNFs to deduce their assembly
68 mechanism. Additionally, other techniques such as nuclear magnetic resonance^{21, 22},
69 circular dichroism²³, small-angle X-ray scattering^{16, 24}, fluorescence²⁵, Raman
70 spectroscopy^{26, 27}, sum-frequency generation spectroscopy^{28, 29} and Fourier-transform
71 infrared spectroscopy (FTIR)³⁰, enable in-situ tracking of conformational changes
72 during SNF assembly in solution. However, a major challenge lies in establishing a
73 direct correlation between the conformational data obtained from spectroscopic
74 techniques and the nanoscale morphologies revealed by microscopy methods. This
75 hurdle arises because different techniques often require distinct sample preparation
76 procedures, hindering the simultaneous investigation of both aspects on a single
77 sample. Consequently, there is a growing interest in developing a method capable of
78 simultaneously examining both conformational and morphological changes.

79 Graphene presents unique advantages for investigating SNF assembly. It acts as
80 an assembly interface, immobilizing SNFs mainly through hydrophobic interactions
81 and π – π stacking³¹. This characteristic not only accelerates SNF formation in SF
82 solutions, reducing assembly duration from weeks to hours, but also aids in-situ
83 observations of morphological changes during SNF assembly using AFM³². Moreover,
84 graphene can be engineered with periodic nanostructures that enable the excitation of
85 localized surface plasmons³³. Graphene plasmon offer a significant enhancement for
86 FTIR detection, achieving nanoscale sensitivity for detecting trace molecules³⁴⁻³⁸.
87 Thus, the attributes of graphene enable real-time monitoring of both secondary
88 structure and morphological changes during SNF assembly, refining and validating
89 various theoretical models for a deeper understanding of the assembly mechanism.

90 Here, we employ a graphene plasmonic infrared sensor in tandem with
91 multi-scale molecular dynamics (MD) simulations to delve into the assembly process
92 of SNF. By identifying secondary structure content and associating them with specific
93 morphologies of different assembly intermediates, we reveal the key steps involved in
94 SNF assembly. Subsequent experimental and simulation data underscore the pivotal
95 roles of graphene interfaces and elevated temperatures in promoting the formation of
96 elongated SNFs. These insights illuminate the SNF assembly process: SF molecules
97 initially undergo a transition into β -sheet-enriched oligomers, then align and elongate
98 to form SNFs, as demonstrated in Fig. 1a.

99 **Results**

100 **Graphene plasmon-enhanced FTIR for probing SNFs**

101 The assembly of regenerated SF in solutions serves as a widely used *in vitro* model
102 for exploring the mechanism of silk spinning^{39, 40}. Thus, we utilized regenerated SFs
103 extracted from *Bombyx mori* silkworm cocoon⁴¹ to assemble on the graphene
104 plasmonic infrared sensor (see Methods). The mean molecular weight of our utilized
105 regenerated SFs is \sim 160 kDa, because the degumming process causes degradation of
106 the SF peptide chains, as depicted in Figure S1. To probe the assembly process of
107 SNFs by FTIR, we utilized a graphene plasmonic infrared sensor (details in Fig. S2).
108 The graphene nanoribbon width is \sim 60 nm and period-to-width ratio \approx 2:1 as shown in
109 Fig. S3. The sensor was designed to a field-effect transistor based on monolayer
110 graphene nanoribbons, as shown in Fig. 1b and Fig. S4. The gate voltage (V_G) was
111 also applied for dynamically tuning the resonance frequency of graphene plasmon to
112 target molecular fingerprints (details in Note 1 and Fig. S5 of Supplementary
113 information)^{42, 43}.

114 In the right panel of Fig. 1b, a typical AFM image displays the SNFs selectively
115 assembled on the graphene nanoribbons after 300 minutes of assembly. The total
116 height of the assembled structure is approximately 7.0 nm, which includes \sim 5.0
117 nm-thick SNFs and \sim 2.0 nm-thick monolayer graphene. The observed height of the
118 monolayer graphene exceeding 0.34 nm is attributed to poly(methyl methacrylate)

119 (PMMA) residue contamination from the sensor fabrication⁴⁴. The assembled SNFs
120 are located on the edges and surface of the graphene nanoribbons (i.e., graphene
121 plasmonic hotspots)⁴⁵, which enables graphene plasmonic infrared sensors to
122 sensitively measure their chemical structure. The extinction spectra of the sensor were
123 obtained by in-situ altering the gate voltage using the formula Extinction=1- T_{V_G}/T_0 ,
124 where T_{V_G} represents the transmittance measured at a specific gate voltage (V_G), and
125 T_0 is measured at the charge-neutral point (V_{CNP}) of graphene.

126 Fig. 1c indicates two typical extinction spectra of the graphene plasmon infrared
127 sensor: one before (black dashed curve) and the other after (red curve) SNF assembly.
128 Upon SNF assembly, two prominent notch regions (i.e., 1538 cm⁻¹ and 1626 cm⁻¹)
129 become evident on the graphene plasmon resonant peak. These dips align well with
130 the peaks observed in the infrared spectrum of bulk SNF films (black curve),
131 corresponding to the amide I band (i.e., purple dashed line) and amide II band (i.e.,
132 green dashed line) of as-assembled SNFs. These signatures appear as dips on the
133 graphene plasmon resonance peak due to the destructive interference between the
134 graphene plasmon and the SNF molecular vibrations. Graphene plasmon enable a
135 robust infrared response from the nanoscale SNFs, facilitating the analysis of their
136 secondary structures. Additionally, after the assembly of SNFs, the plasmon resonance
137 of graphene nanoribbons experiences a red-shift, whereas the same V_G was
138 maintained as before the assembly. This shift can be attributed to the negative charge
139 carried by SFs (with an isoelectric point ~3.5) in the solution (pH ~6.8), resulting in
140 the doping of graphene³².

141

142 **Morphology analysis during SNF assembly**

143 We propose that the assembly process of SNFs involves nucleation, growth, and a
144 final plateau. To reveal the intermediates at various assembly stages, we varied two
145 key parameters: assembly duration (15 min, 60 min, and 300 min) and assembly
146 temperature (279 K, 299 K, and 348 K). Adjusting temperature allows for control over
147 the assembling rate³². Then the morphologies of the assembled SNFs on the graphene

148 plasmonic infrared sensor were examined using AFM (details in Methods), as
149 presented in Fig. 2a-c. It is worth noting that we immersed the same graphene
150 plasmonic infrared sensors in SF solutions (10.1 μ g/mL) to study the assembly
151 process across different durations at each temperature.

152 At 279 K, oligomers with a height of ~0.8 nm appeared on the graphene surface
153 after 15 min of assembly, as illustrated in Fig. 2a. These oligomers gradually evolve
154 into short-rod-like SNFs with increasing assembly duration. After 60 min and 300 min,
155 short-rod-like SNFs heights reach ~3.5 nm and ~4.1 nm, respectively. At 299 K, the
156 initial assembly stage (15 min) shows similar behavior with the formation of
157 oligomers, but with a slightly larger height of around 1.2 nm compared to those
158 observed at 279 K, as shown in Fig. 2b. Subsequently, the morphology evolved from
159 oligomers to dense short-rod-like SNFs with heights of ~4.8 nm and ~4.9 nm after 60
160 min and 300 min of assembly, respectively. At 348 K, the assembly process appears
161 faster at this higher temperature. Even after only 15 minutes, short-rod-like SNFs with
162 a height of about 3.3 nm are already observed, as depicted in Fig. 2c. As the assembly
163 duration increased to 60 min and 300 min, the SNFs became more enriched and
164 elongated, resulting in longer and thicker SNFs with heights of ~4.8 nm and ~6.2 nm,
165 respectively.

166 Fig. 2d summarizes the heights of oligomers and SNFs assembled on graphene
167 nanoribbons at different durations under varied temperatures (details in Fig. S6). As
168 the temperature rises, the heights of the short rod-like SNFs (representing the
169 combined heights of multiple stacked nanofibrils) also increase, and the lengths of the
170 SNFs become longer, indicating a higher assembly rate. Remarkably, at lower
171 temperatures, the elongation of SNFs proves notably challenging, likely due to the
172 reduced thermal motion of protein molecules (details in Fig. S7). With the assistance
173 of a deep learning algorithm (details in Note 2 of Supplementary Information), we
174 extracted the lengths of assembled SNFs with a thickness of approximately 3-4 nm at
175 different temperatures in Fig. S8. The average lengths of assembled SNFs is
176 approximately 17 nm at 279 K, 24 nm at 299 K, and 95 nm at 348 K, respectively.
177 This progressive increase in length with rising temperature further underscores the

178 critical role of temperature in promoting SNF elongation.

179

180 **Secondary structure analysis during SNF assembly**

181 To correlate these assembly intermediates with different assembly stages, it is
182 essential to assess their secondary structures. For example, based solely on their
183 morphological features, clarifying whether the oligomer represents assembly
184 intermediate in the nucleation stage or SF is challenging. This is because the observed
185 oligomers exhibit a height similar to that of individual SF molecules. Therefore, we
186 evaluate the β -sheet content of both oligomers and SNFs in relation to their
187 morphology using graphene plasmon-enhanced FTIR. While comprehensively
188 describing SNF assembly presents a significant challenge, focusing on changes in
189 β -sheet content offers a valuable perspective for understanding the fibrillation process.
190 This approach is supported by extensive research that has demonstrably linked
191 β -sheets to the remarkable mechanical properties of natural silks^{8, 46, 47}.

192 Fig. 3a exemplifies the methods for extracting the secondary structure content of
193 assembly intermediates at 279 K with different assembly durations. Here, Δ Extinction
194 spectra are extracted by subtracting pristine Extinction spectra of SNFs with graphene
195 plasmon enhancement from the baseline (details in Note 3 of Supplementary
196 Information)³⁴. The Δ Extinction spectra in the response range of the amide I band
197 ($1600\text{-}1700\text{ cm}^{-1}$) are deconvoluted. The contributions to the amide I band mainly
198 come from three distinct Gaussian peaks corresponding to β -sheet (i.e., $1616\text{-}1637\text{ cm}^{-1}$),
199 random coil (i.e., $1638\text{-}1662\text{ cm}^{-1}$), and turn (i.e., $1663\text{-}1685\text{ cm}^{-1}$)⁴⁸. It is worth
200 noting that the peak between $1685\text{-}1700\text{ cm}^{-1}$, possibly belonging to intramolecular
201 β -sheet, is too weak to be considered. Finally, the secondary structure content is
202 calculated by determining the area percentage of each resolved peak.

203 As shown in Fig. 3b, we can extract the average content of secondary structures
204 with standard error for semi-quantitative analysis: β -sheet is $\sim 79\% \pm 4\%$, random coil
205 is $\sim 14\% \pm 3\%$, and turn is $\sim 7\% \pm 2\%$ at 15 min; β -sheet is $\sim 57\% \pm 4\%$, random coil is
206 $\sim 40\% \pm 5\%$, and turn is $\sim 3\% \pm 1\%$ at 60 min; β -sheet is $\sim 49\% \pm 3\%$, random coil is
207 $\sim 41\% \pm 2\%$, and turn is $\sim 10\% \pm 1\%$ at 300 min. The average secondary structure

208 content, along with the standard error, are determined by applying the same fitting
209 method to 3-4 extinction spectra (which were repeatedly measured for each sample,
210 further details in Note 3).^{49, 50} These results are depicted in Figures 3b-d and Figures
211 S9-14. To mitigate any potential errors in secondary structure content that could arise
212 from variations in fitting parameters (such as baselines, number of peaks, and the full
213 width at half maximum of deconvolution peaks), we generated a range of fitting
214 results. As shown in Figure S15, there is a consistent decrease in β -sheet content with
215 increasing assembly durations.

216 Therefore, the secondary structure content and its changes during the assembly
217 process at 279 K, 299 K, and 348 K can be summarized in Fig. 3b-d, respectively.
218 Remarkably, the oligomers with a height of 0.8 nm and 1.2 nm (i.e., after assembling
219 for 15 min at 279 K and 299 K, corresponding to Fig. 2a and Fig. 2b) have a high
220 β -sheet content of ~79% and ~67%. This is significantly higher than the β -sheet
221 content of SF (details in Fig. S16). Since changes in secondary structure indicates
222 assembly events^{18, 27, 51}, these observed oligomers are assembly intermediates rather
223 than SFs. These experimental findings demonstrate that the oligomer has undergone a
224 conformational transition from the amorphous SF to β -sheet-rich nuclei before SNF
225 formation.

226 Correlating the morphology analysis in Fig. 2 with the corresponding changes in
227 secondary structure from Fig. 3, we gain valuable insights into the SNF assembly
228 process. Notably, the β -sheet-enriched oligomers formed on graphene at the
229 nucleation stage (e.g., 15 min at 279K and 299K). The densely covered graphene by
230 oligomers implies the high efficiency and fast pace of nucleation induced by graphene.
231 As the assembly duration increases, the thickness of the assembly intermediates also
232 increases, as demonstrated in Fig. 2d. This indicates that the assembly interface
233 moves away from the graphene surface, leading to a reduced template effect and a
234 consequent gradual decrease in the average β -sheet content. Furthermore, Fig. 3c and
235 Fig. 2d (from 60 min to 300 min) illustrate that when the assembly interface is
236 significantly distanced from graphene, the β -sheet content stabilizes, despite the
237 increasing length and thickness of SNFs. It is also noteworthy that the β -sheet content

238 of well-assembled SNFs at the graphene interface (300 min, 348 K) is comparable to
239 those assembled in heated solutions, as detailed in Note 4 and Fig. S17 of the
240 Supplementary Information. This suggests minimal influence of the graphene
241 plasmonic infrared sensor on the growth stage of SNFs.

242 **Multi-scale MD simulations of SNF assembly**

243 With a deep understanding of specific assembly intermediates, we have theoretically
244 reproduced the assembly process through a combination of all-atom and
245 coarse-grained MD simulations. Our primary focus is to revisit the dynamics of SNF
246 assembly over extended timeframes while also examining the influence of
247 environmental factors, specifically the graphene interface and temperature.
248 Researchers have revealed that the C-terminus possesses a helical structure that
249 typically stabilizes the protein against aggregation^{8, 22}, whereas the N-terminus, being
250 sensitive to pH changes, triggers the assembly process by forming β -sheet at acidic
251 pH^{39, 52}. Since the degumming process disrupt the peptide chain of SF in experiment,
252 the regenerated SF protein lacks C- or N- termini. Moreover, we mainly investigate
253 the assembly of regenerated SF on graphene surfaces under neutral pH, and the C-
254 and N-termini do not form β -sheets under neutral pH^{8, 52}. Thus, in our simulation
255 models, a short repetitive peptide sequence as a fragment of SF without considering
256 C- and N- termini (details in Methods and Note 5 of Supplementary Information for
257 details) was adapted to investigate the formation of β -sheet. The initial structure of SF
258 is generated using AlphaFold2⁵³.

259 To understand the initial stages of SF assembly on graphene (nucleation stage),
260 we employed all-atom MD simulations. Since the real SF in solution exhibits a highly
261 disordered conformation, we conducted 1 μ s simulation to generate realistic SF
262 models in solution. These models were then placed on the graphene surface, as shown
263 in Fig. 4a. Subsequently, an additional 1 μ s simulation was conducted to explore the
264 assembly process of SF absorbed on graphene, as depicted in Fig. 4b. By capturing
265 snapshots of SF at various time points (0 μ s, 0.25 μ s, 0.5 μ s, and 1 μ s), it becomes
266 evident that SF undergoes conformational transition, as indicated by the formation of
267 β -sheet (highlighted by red circles) parallel to the graphene surface with the

268 progression of assembly duration. Furthermore, a comparison of the assembly
269 behavior of SF with and without graphene reveals that graphene can indeed accelerate
270 the rate of SF conformational transitions. Additionally, at higher temperatures,
271 thermal motion intensifies, leading to faster growth rates as well (details in Fig. S18).
272 These insights align well with the experimental results.

273 As the assembly process of SNF extends into the growth stage, which is beyond
274 the time and length scales accessible by all-atom MD simulations, we employed
275 coarse-grained MD simulations. Two models were built to clarify the impacts by
276 temperature and graphene-induced oligomers during the growth stage. Since first
277 layer of oligomers covered the graphene surface, the first model starts with four
278 graphene-template-induced oligomers (blue, β -sheet content \sim 51.2%), followed by
279 introducing three new SF molecules (red), as shown in Fig. 4c. The second model
280 begins with seven SF molecules to represent the assembly process in solution without
281 graphene, as shown in Fig. S19a.

282 To investigate the temperature effect on facilitating SNF elongation, we compare
283 the average contact number (N) based on first model at varied temperature ($0.8*T$ and
284 T , as described in Methods). As shown in Fig. 4c, the red molecules form
285 well-ordered structure at $0.8*T$. Some red molecules tend to establish interfacial
286 contacts along the geometric surface of their respective structures, resulting in a
287 clearly defined contact interface (as magnified by a yellow dashed circle). It is noted
288 that some red molecules exhibit no contact (as magnified by a black dashed circle),
289 disrupting the assembly elongation process and resulting in shorter SNFs. Thus, red
290 molecules have limited contacts ($N=521\pm12$) with blue oligomers. In sharp contrast,
291 when the temperature is increased to T , adjacent blue oligomers and red molecules
292 undergo contact fusion promoted by random structures (as magnified by a green
293 dashed circle). This results in an interconnected β -sheet network with numerous
294 interfacial contacts ($N=1175\pm15$), which provides the necessary stability for SNF
295 elongation. Moreover, as shown in Fig. 4c and Fig. S19, the β -sheet peptide chain axis
296 of the assembled oligomers tends to be parallel with the elongation axis of SNF at T ,
297 which is consistent with previous reports^{54, 55}. Therefore, the simulation results are

298 consistent with experimental observations that lower temperatures are unbeneficial for
299 SNF elongation.

300 MD simulations provide valuable insights into the structure-property
301 relationships at the molecular scale. One key finding concerns the β -sheet content of
302 the assembled structures. By summarizing β -sheet content in these two models, as
303 shown in Fig. S19b, it is shown that the average β -sheet content experiences a
304 decrease after the assembly process compared to the initial graphene-induced
305 oligomers (51.2%). For instance, at $0.8*T$, the average β -sheet content drops to
306 $49.2\pm0.3\%$. The reduction can be attributed to the newly added SF molecules (colored
307 red) forming a β -sheet content of around 46.5% post-assembly, a structure closely
308 matching that of the assembly formed at $0.8*T$ in model 2 without graphene (β -sheet=
309 $46.4\pm0.3\%$). The observation underscores that the decrease in β -sheet content is a
310 consequence of the diminishing template effect of graphene, aligning well with the
311 experimental findings.

312

313 **Discussion**

314 In summary, we introduce an innovative experimental approach utilizing graphene
315 plasmonic infrared sensor, which can identify the secondary structure contents and
316 corresponding morphologies of assembly intermediates (ranging from 0.8 nm to 6.2
317 nm in thickness) during SNF assembly. By combining multi-scale MD simulations,
318 we gain insights into the molecular mechanisms underlying protein-protein and
319 protein-environment interactions. The assembly process for regenerated *Bombyx mori*
320 SF is thus provided as illustrated in Fig. 1a. In nucleation stage, unfolded SF
321 molecules undergo a conformational transition to form β -sheet-enriched oligomers.
322 These oligomers then progress to the growth stage, connecting with adjacent
323 molecules and elongating into short-rod-like SNFs. The β -sheet peptide chain axis of
324 the assembled oligomers has a preferred orientation – parallel to the elongation axis of
325 the SNFs. Ultimately, the short-rod-like SNFs align and elongate, becoming thicker
326 and longer to form long-rod-like SNFs. Additionally, the critical roles of
327 graphene-mediated interface and temperature in the SNF assembly process have been

328 revealed. Specifically, the graphene interface accelerates SNF nucleation, while
329 higher assembly temperatures enhance both SNF nucleation and elongation.

330 The discovery of β -sheet-enriched oligomers present prior to SNF formation
331 aligns with the previous experimental observations of β -sheet-enriched
332 nanocompartments in *Bombyx mori* silk gland⁵⁶, which motivates us to speculate
333 about a potential pathway in the silk spinning process of *Bombyx mori*: During
334 storage in the middle silk gland, SF has already assembled into β -sheet-rich oligomers
335 and short-rod-like SNFs, which remain stable due to the presence of a hydrophilic
336 coating. These β -sheet-dominated oligomers and short-rod-like SNFs can rapidly fuse
337 into elongated nanofibrils during spinning. This is essential for the rapid consolidation
338 of silk under the constraints of limited spinning time and external stimuli.

339 Furthermore, we would like to highlight the advancements of the graphene
340 plasmonic infrared sensor. By leveraging graphene plasmons, the sensor significantly
341 enhances the sensitivity of the FTIR technique, enabling the detection of trace
342 assembly intermediates with sub-nanometer resolution. In terms of practicality, the
343 fabrication strategies of the graphene plasmonic infrared sensor are relatively standard
344 (details in Methods)^{57, 58}. Additionally, the required equipment – commercially
345 available micro-FTIR and AFM – is commonly found in most materials science and
346 nanotechnology labs. Furthermore, the sensor's applicability extends to in-situ
347 characterization of diverse SF assembly processes under complex environmental
348 conditions. It can effectively analyze assembly dynamics in environments with
349 varying pH levels, shear forces, ions, and solvents. This capability will prove
350 beneficial for inspiring novel artificial spinning strategies.

351

352 **Methods**

353 **The chemicals sampling**

354 *Preparation of SF solution:* A standard protocol was followed to prepare the aqueous
355 solution of pure *Bombyx mori* SF⁴¹. Firstly, removing sericin. A 2 L solution of
356 NaHCO₃ with 0.5% w/v (weight/volume) was boiled; 10 g of silkworm cocoons were
357 added and boiled for 30 minutes. The degummed silk was cleaned with distilled water

358 and squeezed dry. Subsequently, it was boiled in a fresh NaHCO_3 solution for another
359 30 minutes to remove residual sercin. Then, it was dried overnight at room
360 temperature or in an oven. Secondly, dissolving degummed silk fiber. The degummed
361 silk fiber at a concentration of 10% *w/v* was dissolved in a 9.3 mol/L LiBr solution
362 with a water bath at 333 K for 2 hours. The solution was cooled to room temperature,
363 and it was dialyzed in deionized water using a dialysis bag for 72 hours to obtain a SF
364 solution with a concentration of approximately 2% (*w/w*, weight in weight). After
365 dialysis, the solution was centrifuged at $9600\times g$ (gravitational acceleration) at least
366 twice for 30 minutes to remove insoluble impurities. The final SF solution was stored
367 at 279 K.

368 **Fabrication of graphene plasmonic infrared sensor**

369 First, the graphene (purchased from BEIJING GRAPHENE INSTITUTE CO., LTD)
370 was transferred onto a 285 nm SiO_2 /500 μm Si substrate (purchased from Silicon
371 Valley Microelectronics, Inc) using the wet transfer method⁴⁴. Then a 270 nm-thick
372 electron beam resist (Polymethyl methacrylate, PMMA 950 K) film was spin-coated
373 on graphene. Electron-beam lithography (Vistec 5000+ES, 5-nm resolution, 100 keV
374 beam) was used to pattern the graphene (~60 nm for the width and 2:1 for
375 period-to-width) into arrays of nanoribbons. Subsequently, the patterned region was
376 exposed after developing it with a PMMA developer (MiBK: IPA=1:3). The exposed
377 graphene was etched to create the desired nanoribbon structures using oxygen plasma
378 (SENTECH). Electrode patterning was performed using electron-beam lithography
379 (Vistec 5000+ES) or photolithography (SUSS MA6). Electron beam evaporation
380 (OHMIKER-50B) was utilized to deposit a 5 nm layer of chromium followed by a 50
381 nm layer of gold onto the graphene to create the electrodes. Finally, a lift-off process
382 was conducted by immersing the sensor in acetone and alcohol to remove any
383 remaining resist residues.

384 **Assembly process of SNF**

385 To initiate the assembly process of SNF, both the graphene plasmonic infrared sensor
386 and SF solution (concentration: 10.1 $\mu\text{g/mL}$) were preheated for 10 minutes at the
387 desired temperature (e.g., 279 K, 299 K, 343 K). The sensor was then carefully

388 immersed in the SF solution with the graphene surface facing downwards to prevent
389 the deposition of SF molecules and impurities onto the graphene surface due to
390 gravity. Following specific assembly durations, the sensor was thoroughly cleaned to
391 remove loosely adsorbed assembly intermediates and prevent protein deposition.
392 Cleaning involved rinsing the sensor with deionized water to eliminate any protein
393 buildup caused by water evaporation from the SF solution. Finally, the sensor was
394 dried by gently blowing nitrogen gas to avoid potential damage or contamination.

395 **Characterization of the graphene plasmonic infrared sensor**

396 The morphologies of the assembled samples were characterized using AFM (Bruker
397 Multimode8). FTIR transmission measurements were conducted using a Nicolet iN10
398 spectrometer equipped with an IR microscope and a 15X objective lens (Thermo
399 Fisher). The aperture size for each measurement was set to 100 $\mu\text{m} \times 200 \mu\text{m}$. The
400 FTIR spectrometer was set with a resolution of 8 cm^{-1} , and an accumulation of 128
401 scans.

402 The electrical properties of the graphene plasmonic infrared sensor were characterized
403 using a source meter (Keithley 2636B). The source meter allows for evaluating the
404 electrical performance of every sensor. Additionally, the source meter was used to
405 tune the back gate voltage, enabling control of electrical properties and modulation of
406 the graphene plasmonic response.

407 **Molecular dynamics simulations**

408 *All-atom molecular dynamics simulations*: AlphaFold2⁵³ was utilized to generate the
409 structure of the SF fragment, serving as the initial configuration for MD simulations.
410 Initial boxes with dimensions of approximately 10 \times 10 \times 10 nm³, each containing a SF
411 fragment along with 3.2 \times 10⁴ water molecules, were constructed using the PACKMOL
412 program (Version 20.14.0)⁵⁹ and VMD 1.9.3 program⁶⁰. The Amber ff14SB force
413 field⁶¹ was applied to SFs and graphene, and the OPC3 water model was used⁶².
414 GROMACS 2021.7 code⁶³ was used to perform all MD simulations, while the VMD
415 1.9.3 program was used for visualizing trajectories. 1 μs simulations for both the
416 simple solution box and the graphene interface model were performed, see Note 5 for
417 simulation details. The last 0.2 μs of each trajectory was utilized for data extraction

418 and analysis. Hydrogen bond criteria are defined as follows: distance
419 (Donor-Acceptor) ≤ 0.35 nm \wedge angle (Hydrogen-Donor-Acceptor) $\leq 30^\circ$. The
420 secondary structure was analyzed using the DSSP approach⁶⁴.

421 *Coarse-grained simulations:* A series of coarse-grained molecular dynamics
422 simulations were conducted using OpenAWSEM to study the SF assembly using the
423 AWSEM force field⁶⁵. The same SF sequence as in all-atom MD simulations was
424 employed. Each residue was simplified as three beads representing C_α, C_β, and
425 oxygen atoms, respectively. Simulations were initiated with a single SF fragment
426 starting from a randomly extended chain, running for 2×10^6 steps. The final structure
427 of the oligomer was copied seven times for subsequent assembly simulations at two
428 distinct temperatures: $0.8*T$ and T . $T = 360$ K. However, due to the usage of the
429 coarse-grained model, this value does not correspond to 360 K in reality. So we used
430 $0.8*T$ and T when referring to the coarse-grained simulation results. For each, the last
431 10^7 steps were run and repeated 5 times with final snapshots as shown in Fig. 4c. The
432 β-sheet content of the final state was calculated using DSSP⁶⁶. Contact is defined as
433 intermolecular residue pairs between two adjacent SFs when the distance between C_α
434 atoms is less than 10 Å.

435

436 **Data availability**

437 Source Data are provided with this paper.

438

439 **Code availability**

440 The code that support the findings of this study are available in the Source Data file.

441

442 **References**

- 443 1. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain-computer
444 interfaces. *Nat. Electron.* **6**, 109-118 (2023).
- 445 2. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal
446 bio-integrated electronics. *Nat. Mater.* **9**, 511-517 (2010).
- 447 3. Mandal, B.B., Grinberg, A., Seok Gil, E., Panilaitis, B. & Kaplan, D.L.
448 High-strength silk protein scaffolds for bone repair. *Proc. Natl. Acad. Sci.*
449 *U.S.A.* **109**, 7699-7704 (2012).
- 450 4. Sahoo, J.K., Hasturk, O., Falcucci, T. & Kaplan, D.L. Silk chemistry and
451 biomedical material designs. *Nat. Rev. Chem.* **7**, 302-318 (2023).
- 452 5. Liu, L.-X. et al. Flexible and Multifunctional Silk Textiles with Biomimetic
453 Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic
454 Interference Shielding, Humidity Monitoring, and Self-Derived
455 Hydrophobicity. *Adv. Funct. Mater.* **29**, 1905197 (2019).
- 456 6. Ling, S. et al. Polymorphic regenerated silk fibers assembled through
457 bioinspired spinning. *Nat. Commun.* **8**, 1387 (2017).
- 458 7. Barthelat, F., Yin, Z. & Buehler, M.J. Structure and mechanics of interfaces in
459 biological materials. *Nat. Rev. Mater.* **1**, 16007 (2016).
- 460 8. Yarger, J.L., Cherry, B.R. & van der Vaart, A. Uncovering the
461 structure-function relationship in spider silk. *Nat. Rev. Mater.* **3**, 18008 (2018).
- 462 9. Greving, I., Cai, M., Vollrath, F. & Schniepp, H.C. Shear-Induced
463 Self-Assembly of Native Silk Proteins into Fibrils Studied by Atomic Force
464 Microscopy. *Biomacromolecules* **13**, 676-682 (2012).
- 465 10. Schniepp, H.C., Koebley, S.R. & Vollrath, F. Brown Recluse Spider's
466 Nanometer Scale Ribbons of Stiff Extensible Silk. *Adv. Mater.* **25**, 7028-7032
467 (2013).
- 468 11. Du, N., Yang, Z., Liu, X.Y., Li, Y. & Xu, H.Y. Structural Origin of the
469 Strain-Hardening of Spider Silk. *Adv. Funct. Mater.* **21**, 772-778 (2011).
- 470 12. Keten, S., Xu, Z., Ihle, B. & Buehler, M.J. Nanoconfinement controls stiffness,
471 strength and mechanical toughness of β -sheet crystals in silk. *Nat. Mater.* **9**,

472 359-367 (2010).

473 13. Ling, S., Kaplan, D.L. & Buehler, M.J. Nanofibrils in nature and materials
474 engineering. *Nat. Rev. Mater.* **3**, 18016 (2018).

475 14. Rising, A. & Johansson, J. Toward spinning artificial spider silk. *Nat. Chem.*
476 *Biol.* **11**, 309-315 (2015).

477 15. López Barreiro, D., Yeo, J., Tarakanova, A., Martin-Martinez, F.J. & Buehler,
478 M.J. Multiscale Modeling of Silk and Silk-Based Biomaterials—A Review.
479 *Macromol. Biosci.* **19**, 1800253 (2019).

480 16. Martel, A. et al. Silk Fiber Assembly Studied by Synchrotron Radiation
481 SAXS/WAXS and Raman Spectroscopy. *J. Am. Chem. Soc.* **130**, 17070-17074
482 (2008).

483 17. Yang, W. et al. Quaternized Silk Nanofibrils for Electricity Generation from
484 Moisture and Ion Rectification. *ACS Nano* **14**, 10600-10607 (2020).

485 18. Wan, Q. et al. Mesoscale structure development reveals when a silkworm silk
486 is spun. *Nat. Commun.* **12**, 3711 (2021).

487 19. Gong, Z., Huang, L., Yang, Y., Chen, X. & Shao, Z. Two distinct β -sheet
488 fibrils from silk protein. *Chem. Commun.*, 7506-7508 (2009).

489 20. Silva, L.P. & Rech, E.L. Unravelling the biodiversity of nanoscale signatures
490 of spider silk fibres. *Nat. Commun.* **4**, 3014 (2013).

491 21. Suzuki, Y., Yamazaki, T., Aoki, A., Shindo, H. & Asakura, T. NMR Study of
492 the Structures of Repeated Sequences, GAGXGA (X = S, Y, V), in Bombyx
493 mori Liquid Silk. *Biomacromolecules* **15**, 104-112 (2014).

494 22. Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that
495 controls fibre assembly. *Nature* **465**, 239-U131 (2010).

496 23. Zhong, J. et al. Self-assembly of regenerated silk fibroin from random coil
497 nanostructures to antiparallel β -sheet nanostructures. *Biopolymers* **101**,
498 1181-1192 (2014).

499 24. Lu, L. et al. Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber
500 Suspensions via a Bioinspired Microfluidic Chip. *Adv. Mater. Tech.* **6**,
501 2100124 (2021).

502 25. Partlow, B.P., Bagheri, M., Harden, J.L. & Kaplan, D.L. Tyrosine Templating
503 in the Self-Assembly and Crystallization of Silk Fibroin. *Biomacromolecules*
504 **17**, 3570-3579 (2016).

505 26. Xu, L., Weatherbee-Martin, N., Liu, X.-Q. & Rainey, J.K. Recombinant Silk
506 Fiber Properties Correlate to Prefibrillar Self-Assembly. *Small* **15**, 1805294
507 (2019).

508 27. Malay, A.D. et al. Spider silk self-assembly via modular liquid-liquid phase
509 separation and nanofibrillation. *Sci. Adv.* **6**, eabb6030 (2020).

510 28. Hosseinpour, S. et al. Structure and Dynamics of Interfacial Peptides and
511 Proteins from Vibrational Sum-Frequency Generation Spectroscopy. *Chem.*
512 *Rev.* **120**, 3420-3465 (2020).

513 29. Li, X., Deng, G., Ma, L. & Lu, X. Interchain Overlap Affects Formation of
514 Silk Fibroin Secondary Structures on Hydrophobic Polystyrene Surface
515 Detected via Achiral/Chiral Sum Frequency Generation. *Langmuir* **34**,
516 9453-9459 (2018).

517 30. Ling, S. et al. Conformation Transitions of Recombinant Spidroins via
518 Integration of Time-Resolved FTIR Spectroscopy and Molecular Dynamic
519 Simulation. *ACS Biomater. Sci. Eng.* **2**, 1298-1308 (2016).

520 31. Grant, A.M. et al. Silk Fibroin-Substrate Interactions at Heterogeneous
521 Nanocomposite Interfaces. *Adv. Funct. Mater.* **26**, 6380-6392 (2016).

522 32. Ling, S. et al. Directed Growth of Silk Nanofibrils on Graphene and Their
523 Hybrid Nanocomposites. *ACS Macro Lett.* **3**, 146-152 (2014).

524 33. Yang, X. et al. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy.
525 *Adv. Mater.* **30**, e1704896 (2018).

526 34. Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational
527 fingerprints of molecules with graphene plasmons. *Nat. Commun.* **7**, 12334
528 (2016).

529 35. Daniel Rodrigo, O.L., Davide Janner, Dordaneh Etezadi, F. Javier García de
530 Abajo, Valerio Pruneri, Hatice Altug Mid-infrared plasmonic biosensing with
531 graphene. *Science* **349**, 165-168 (2015).

532 36. Wu, C. et al. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions
533 with Graphene Plasmons. *Adv. Mater.* **34**, 2110525 (2022).

534 37. Hu, H. et al. Gas identification with graphene plasmons. *Nat. Commun.* **10**,
535 1131 (2019).

536 38. Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron
537 nitride nanotubes. *Nat. Nanotech.* **18**, 529-534 (2023).

538 39. Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a
539 pH-sensitive relay. *Nature* **465**, 236-238 (2010).

540 40. Jin, H.-J. & Kaplan, D.L. Mechanism of silk processing in insects and spiders.
541 *Nature* **424**, 1057-1061 (2003).

542 41. Rockwood, D.N. et al. Materials fabrication from *Bombyx mori* silk fibroin.
543 *Nat. Protoc.* **6**, 1612-1631 (2011).

544 42. Buljan, H., Jablan, M. & Soljačić, M. Damping of plasmons in graphene. *Nat.*
545 *Photon.* **7**, 346-348 (2013).

546 43. Avouris, T.L.a.P. Graphene Plasmonics for Terahertz to Mid-Infrared
547 Applications. *ACS Nano* **8**, 1086-1101 (2014).

548 44. Suk, J.W. et al. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary
549 Substrates. *ACS Nano* **5**, 6916-6924 (2011).

550 45. Wu, C. et al. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions
551 with Graphene Plasmons. *Adv. Mater.* **34**, 2110525 (2022).

552 46. Yoshioka, T., Kameda, T., Burghammer, M. & Riekel, C. Mesoscale
553 Confinement in Bagworm Silk: A Hidden Structural Organization. *Nano Lett.*
554 **23**, 827-834 (2023).

555 47. Oroudjev, E. et al. Segmented nanofibers of spider dragline silk: Atomic force
556 microscopy and single-molecule force spectroscopy. *Proc. Natl. Acad. Sci.*
557 *U.S.A.* **99**, 6460-6465 (2002).

558 48. Hu, X., Kaplan, D. & Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous
559 Proteins by Thermal Analysis and Infrared Spectroscopy. *Macromolecules* **39**,
560 6161-6170 (2006).

561 49. Jackson, M. & Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in

562 the Determination of Protein Structure. *Crit. Rev. Biochem. Mol. Biol.* **30**,
563 95-120 (1995).

564 50. Belton, D.J., Plowright, R., Kaplan, D.L. & Perry, C.C. A robust spectroscopic
565 method for the determination of protein conformational composition –
566 Application to the annealing of silk. *Acta Biomater.* **73**, 355-364 (2018).

567 51. Chen, X. et al. Conformation transition kinetics of regenerated *Bombyx mori*
568 silk fibroin membrane monitored by time-resolved FTIR spectroscopy.
569 *Biophys. Chem.* **89**, 25-34 (2001).

570 52. Bauer, J. & Scheibel, T. Dimerization of the Conserved N-Terminal Domain of
571 a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core
572 Domain. *Biomacromolecules* **18**, 2521-2528 (2017).

573 53. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
574 *Nature* **596**, 583-589 (2021).

575 54. Fang, G. et al. Exploration of the tight structural–mechanical relationship in
576 mulberry and non-mulberry silkworm silks. *Journal of Materials Chemistry B*
577 **4**, 4337-4347 (2016).

578 55. Wang, Q. et al. Protein secondary structure in spider silk nanofibrils. *Nat.*
579 *Commun.* **13** (2022).

580 56. Eliaz, D. et al. Micro and nano-scale compartments guide the structural
581 transition of silk protein monomers into silk fibers. *Nat. Commun.* **13**, 7856
582 (2022).

583 57. Altissimo, M. E-beam lithography for micro-/nanofabrication.
584 *Biomicrofluidics* **4** (2010).

585 58. Rius, G., Baldi, A., Ziae, B. & Atashbar, M.Z. Introduction to
586 micro-/nanofabrication. *Springer Handbook of Nanotechnology*, 51-86 (2017).

587 59. Martínez, L., Andrade, R., Birgin, E.G. & Martínez, J.M. PACKMOL: A
588 package for building initial configurations for molecular dynamics simulations.
589 *J. Comput. Chem.* **30**, 2157-2164 (2009).

590 60. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. *J.*
591 *Mol. Graph.* **14**, 33-38 (1996).

592 61. Maier, J.A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and
593 Backbone Parameters from ff99SB. *J. Chem. Theory Comput.* **11**, 3696-3713
594 (2015).

595 62. Izadi, S. & Onufriev, A.V. Accuracy limit of rigid 3-point water models. *J.*
596 *Chem. Phys.* **145**, 074501 (2016).

597 63. Abraham, M.J. et al. GROMACS: High performance molecular simulations
598 through multi-level parallelism from laptops to supercomputers. *SoftwareX* **1-2**,
599 19-25 (2015).

600 64. Joosten, R.P. et al. A series of PDB related databases for everyday needs.
601 *Nucleic Acids Res.* **39**, D411-D419 (2010).

602 65. Lu, W. et al. OpenAWSEM with Open3SPN2: A fast, flexible, and accessible
603 framework for large-scale coarse-grained biomolecular simulations. *PLoS*
604 *Comput. Biol.* **17**, e1008308 (2021).

605 66. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern
606 recognition of hydrogen-bonded and geometrical features. *Biopolymers* **22**,
607 2577-2637 (1983).

608

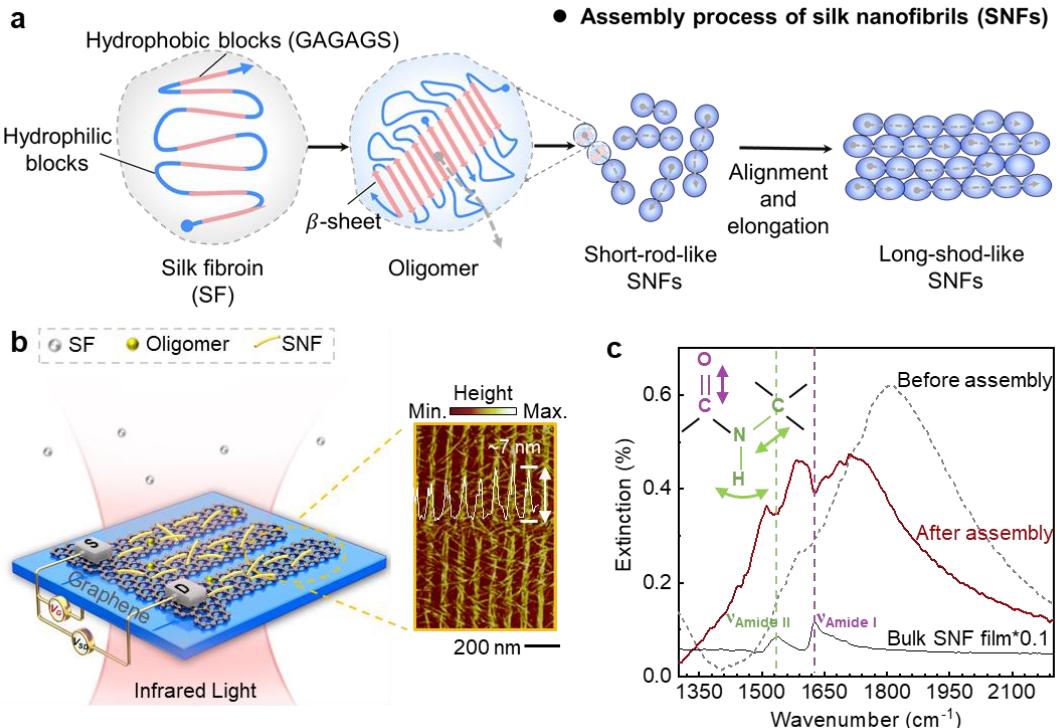
609

610 **Acknowledgements**

611 This work was supported by the National Key R&D Program of China
612 (2021YFA1201500, Q. D.; 2022YFC3400501, Q. W.), the National Natural Science
613 Foundation of China (51925203, Q. D.; 52022025, X. Y.; 21935002 and 52322305, S.
614 L.; 52102160, X. G.; 51972074, X. Y.; 32000882, Q. W.; and U2032206, Q. D.), the
615 Strategic Priority Research Program of the Chinese Academy of Sciences
616 (XDB36000000, Q. D.), the Chinese Academy of Sciences Project for Young
617 Scientists in Basic Research (YSBR-086, X. Y.), Youth Innovation Promotion
618 Association C.A.S. (X. Y.), and the Special Research Assistant Program of the
619 Chinese Academy of Sciences (X. G.).

620

621 **Author Contributions Statement**

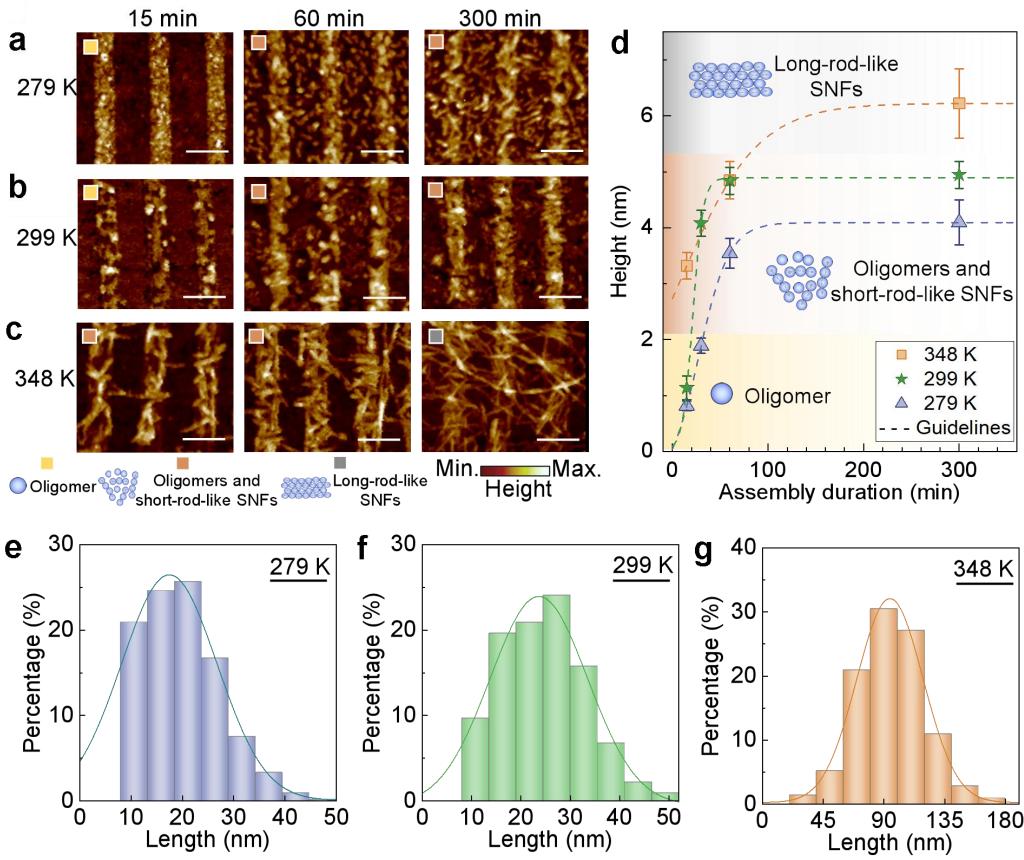

622 The concept for the experiment was initially developed by Q. D., X. Y., S. L., and Q.
623 W.; Graphene plasmonic infrared sensors were designed and prepared by C. W.
624 assisted by Y. D., S. Z., and X. D.; The FTIR experiments were performed by Y. D.
625 and C. W. under the direction of Q.D., and X. Y.; Molecular simulations were
626 performed by Q. W., Y. H., S. L., and L. Y.; Silk fibroin solution was prepared and
627 characterized by Y. D., and C. Z.. Experimental data processing and analysis was
628 performed by C. W. and Y. D. assisted by X. G., C. J., and P. M.; C. W., Q. D., X. Y.,
629 and Y. D. co-wrote the manuscript with inputs and advice from S. L. and Q. W.; C.W.
630 and Y. D. contributed equally to this work. All authors discussed the results at all
631 stages and participated in the development of the manuscript.

632

633 **Competing Interests Statement**

634 The Authors declare no competing interests.

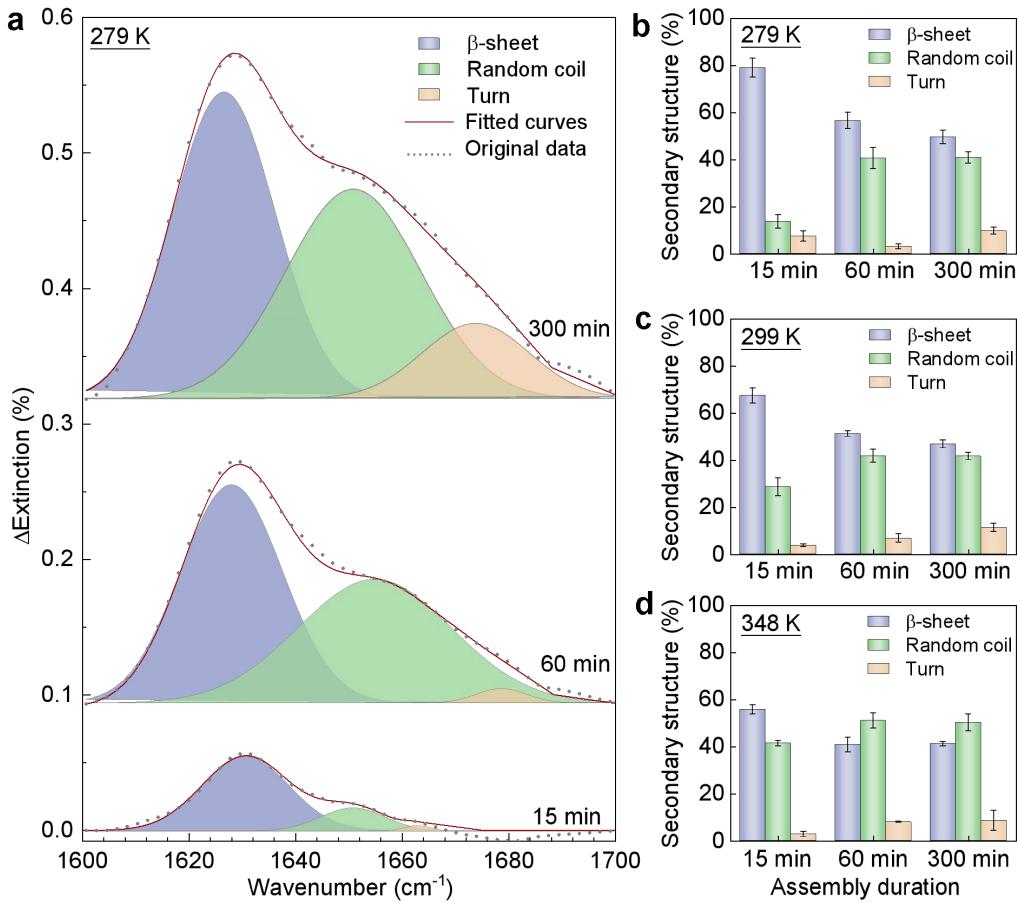
635



636

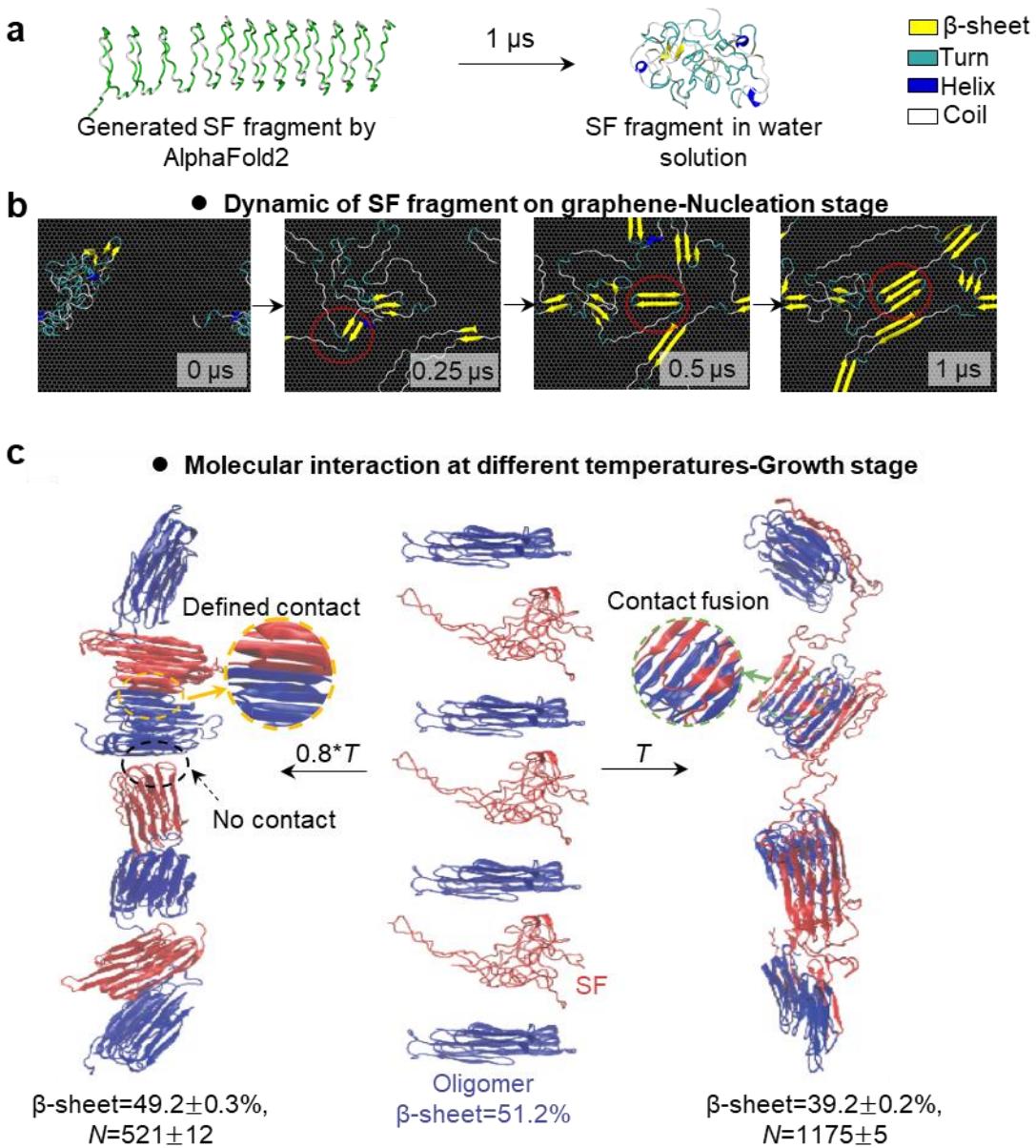
637 **Fig. 1: SNF assembly and graphene plasmon-enhanced FTIR. a** Schematic
 638 diagram of speculative SNF assembly mechanism: Unfolded SF molecules first
 639 undergo a conformational change, forming β -sheet-rich oligomers; these oligomers
 640 then connect with nearby molecules and elongate into short-rod-like SNFs, with the
 641 β -sheet chains aligned along the elongation direction (indicated by grey dashed arrow).
 642 Finally, these short SNFs further align and elongate, becoming thicker and longer to
 643 form long-rod-like SNFs. **b** Schematic diagram of graphene plasmon-enhanced FTIR
 644 for measuring SNF assembly (left panel) and a typical AFM of SNF adsorbed on the
 645 graphene nanoribbons (right panel). **c** The extinction spectra of graphene plasmon
 646 with (red curve) and without SNFs (black dashed curve). T_{V_G} is measured when V_G
 647 is -100 V, while T_0 is measured when V_G is 100 V. The black curve is extinction
 648 spectrum of bulk SNF film which is reduced by 10 times for comparing. The
 649 assembly process occurs in an aqueous solution at 348 K, with a duration of 300 min.

650


651

652

653 **Fig. 2 Nanoscale morphology changes during SNF assembly.** Morphology of
 654 oligomers and SNFs adsorbed on graphene nanoribbons at **a** 279 K, **b** 299 K, and
 655 **c** 348 K. The scale bars are 150 nm. **d** The extracted height changes from **a-c**. The
 656 data were collected from three different positions of graphene nanoribbons and
 657 expressed as mean values +/- SEM. The dashed curved are guidelines. The
 658 statistical length distribution of SNFs with a height of 3-4 nm at **e** 279 K, **f** 299 K,
 659 and **g** 348 K.


660

661

662 **Fig. 3 Secondary structure changes during SNF assembly.** **a** $\Delta\text{Extinction}$ spectra
 663 changes of graphene plasmon-enhanced FTIR during SNF assembly at 279 K (details
 664 in Fig. S9 and Fig. S10). The extracted secondary structure content during the
 665 assembly at **b** 279 K, **c** 299 K (details in Fig. S11&12), and **d** 348 K (details in Fig.
 666 S13&14), respectively. The data of **(b-d)** were collected from four individual
 667 measurements of graphene plasmon-enhanced FTIR and expressed as mean values
 668 \pm SEM.

669

670

671 **Fig. 4 Multi-scale MD simulations of SNF assembly. a** SF fragment model utilized
 672 in MD simulations. **b** Snapshots of SF fragment dynamics on graphene at nucleation
 673 stage (i.e., 0 μ s, 0.25 μ s, 0.5 μ s, and 1 μ s). The assembly snapshot of SF at different
 674 environment temperatures is shown in Figure S17. The yellow, indigo, blue, and white
 675 parts represent β -sheet, turn, helix, and coil, respectively. **c** Snapshots of model 1 at
 676 the growth stage. Two environment temperatures (i.e., 0.8*T and T) are set. N is the
 677 average contact number. The data were collected from five repeated simulations and
 678 expressed as as mean values +/- SEM.

679