

1 **Ultrasparkling mid-infrared biosensing in aqueous solutions with graphene**
2 **plasmon**

4 *Chenchen Wu^{1,2}, Xiangdong Guo^{1,2}, Yu Duan¹, Wei Lyu¹, Hai Hu^{1,2}, Debo Hu^{1,2}, Ke Chen^{1,2},*
5 *Zhipei Sun³, Teng Gao¹, Xiaoxia Yang^{1,2*}, and Qing Dai^{1,2*}*

7 ¹CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of
8 Standardization and Measurement for Nanotechnology, CAS Center for Excellence in
9 Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

10 ²Center of Materials Science and Optoelectronics Engineering, University of Chinese
11 Academy of Sciences, Beijing 100049, China

12 ³Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department
13 of Applied Physics, Aalto University, Espoo 02150, Finland.

14 E-mail: daiq@nanoctr.cn, yangxx@nanoctr.cn

16 Keywords: aqueous solutions, graphene plasmons, surface-enhanced infrared spectroscopy,
17 biosensing

19 Identifying nanoscale biomolecules in aqueous solutions by Fourier transform infrared
20 spectroscopy (FTIR) provides an in-situ and non-invasive method for exploring the structure,
21 reactions, and transport of biologically active molecules. However, this remains a challenge
22 due to the strong and broad infrared (IR) absorption of water which overwhelms the
23 respective vibrational fingerprints of the biomolecules. In this work, we exploit a tunable IR
24 transparent microfluidic system with graphene plasmon to identify ~2 nm thick protein
25 molecules in physiological conditions. The acquired in situ tunability make it possible to
26 eliminate the IR absorption of water outside the graphene plasmonic hotspots by background
27 subtraction. Most importantly, the ultrahigh confinement of graphene plasmons (confined to
28 ~15 nm) permits the implementation of nanoscale sensitivity. Then, the deuterium effects on
29 monolayer proteins are characterized within an aqueous solution. The tunable graphene
30 plasmon-enhanced FTIR technology provides a novel platform for studying biological
31 processes in an aqueous solution at the nanoscale.

33 **1. Introduction**

34 The length scale of a biomolecule is usually a few nanometers.^[1] For instance, proteins
35 are considered the most complex nanoscale molecular machines, and the biomolecular corona
36 interface, the host-pathogen recognition interactions as well as the nanomedicine targeting

37 effects are at the nanoscale level.^[2] Thus, it is important to develop in-situ and non-invasive
38 methods with nanoscale resolutions to understand biological processes in physiological
39 environments.^[3] Along these lines, Fourier transform infrared spectroscopy (FTIR) serves as a
40 label-free, non-invasive, and fast method for identifying biomolecules by detecting their
41 molecular vibrational fingerprints.^[4] However, achieving FTIR in aqueous solutions with
42 nanoscale sensitivity remains a challenge since the strong and broad infrared (IR) band of
43 water (H_2O) always masks the vibrational fingerprints of the biomolecules, especially in the
44 mid-IR range.^[5]

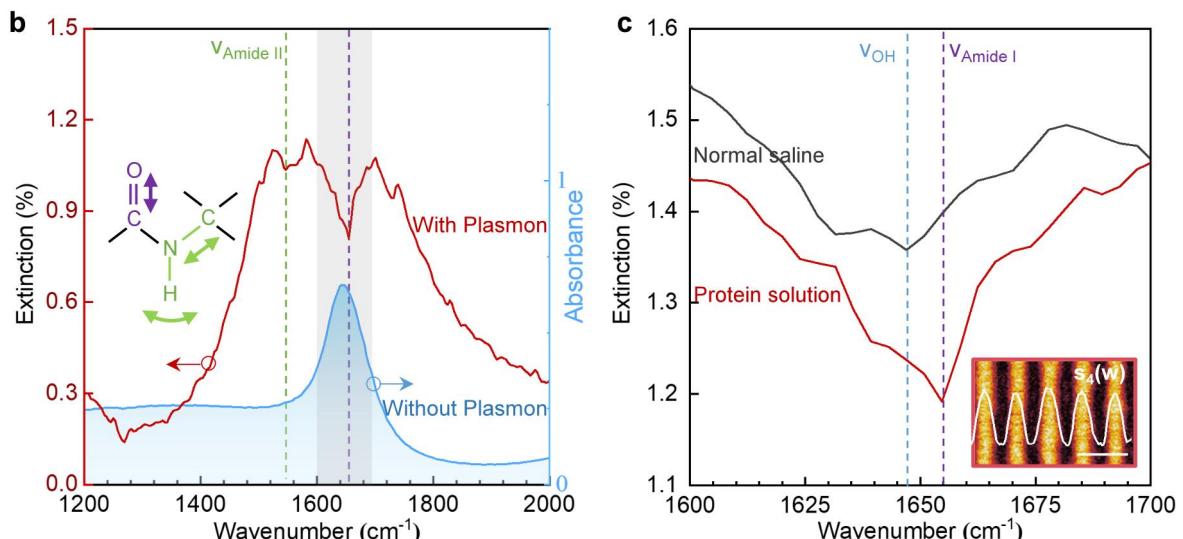
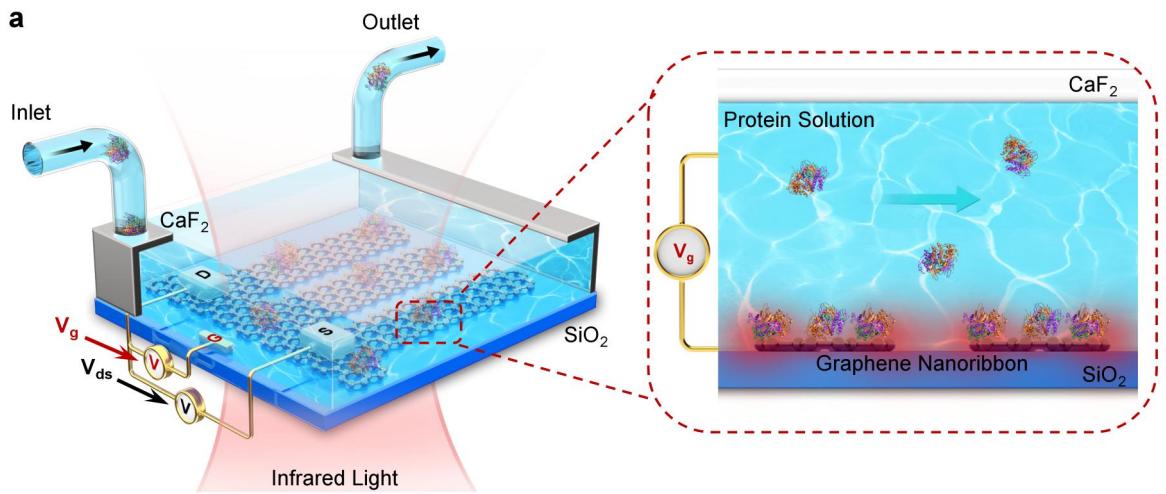
45 Many efforts have been made to implement the vibrational fingerprints masked by H_2O .
46 For example, other solvents (e.g., D_2O , CCl_4 and CS_2) are used in FTIR measurements since
47 their IR absorption bands are shifted away from the absorption band of H_2O .^[4] Another
48 potential route is to shorten the effective IR optical path in an aqueous solution to suppress the
49 interference of H_2O , such as the attenuated total reflectance (ATR).^[6] Nevertheless, neither
50 solvent replacement nor ATR can enhance nanoscale sensitivity for the limited FTIR
51 instrumental detection sensitivity. Therefore, the surface-enhanced infrared absorption
52 (SEIRA) technique is developed for in-situ probing nanoscale samples through the evanescent
53 field of the surface plasmons that are directly associated with the inner reflection process.^[7]
54 Although the metal plasmon-enhanced FTIR has already achieved high sensitivity, the
55 detection limit is ultimately restricted to monolayer molecules by the relatively poor light
56 confinement of metal in the mid-IR.

57 The extremely high light confinement of graphene plasmon renders it attractive for
58 SEIRA applications.^[8] Interestingly to notice that the sensitivity of graphene plasmon-
59 enhanced FTIR can be enhanced to the sub-nanometer scale, which has been previously
60 applied to identifying molecules in the solid phase and the gas phase.^[8a, 9] Graphene has also
61 been employed to increase the infrared absorption of molecules in aqueous solution via the
62 inner reflection process,^[10] but the lack of tunability as well as the utilization of bulky ATR
63 instrumentation prevent it from practical use.^[11]

64 In this work, we develop a tunable graphene plasmon-enhanced FTIR technology to
65 identify nanoscale proteins in physiological conditions. Specifically, the H_2O interference
66 outside the graphene plasmon hotspots is eliminated via enforcing an in-situ background
67 subtracting method in the FTIR measurement by gating. Most importantly, the ultrahigh
68 confinement of graphene plasmons (confined to ~15 nm) permits the implementation of
69 nanoscale sensitivity (down to ~2 nm thick proteins). The superior sensitivity in the
70 physiological environment enabled by our approach, in turn, allows the direct monitoring of

71 the protein hydrogen(H)/deuterium(D) exchange process within an aqueous solution by
72 performing FTIR transmission measurements.

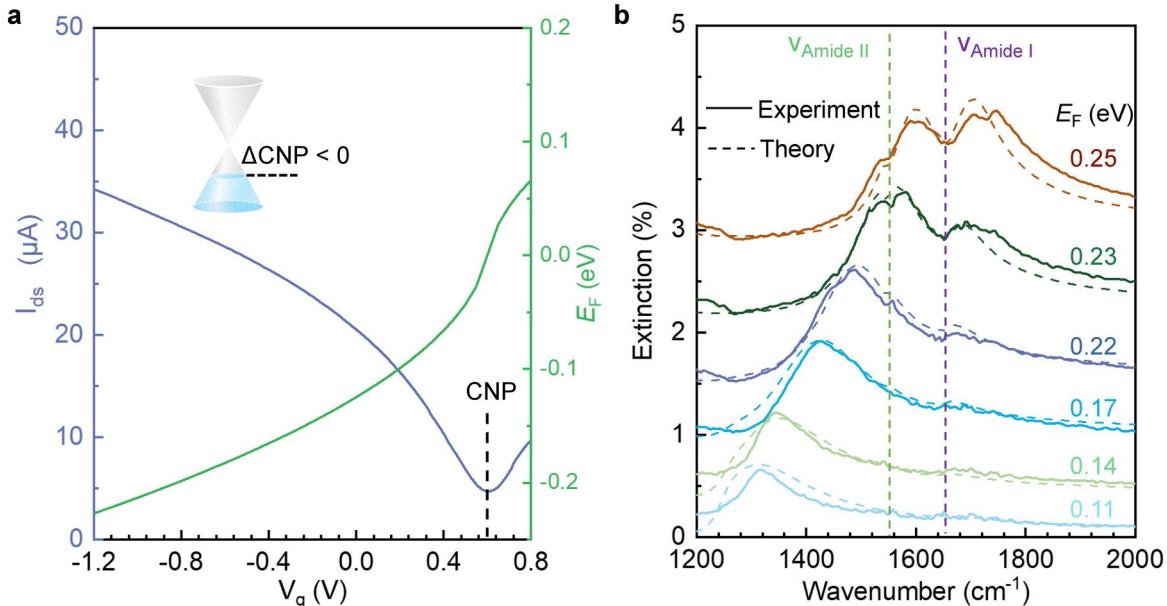
73 **2. The tunable graphene plasmon-enhanced SEIRA in aqueous solutions**



74 The proposed tunable graphene plasmonic aqueous IR (GP-aIR) biosensor is
75 schematically illustrated in Figure 1a. As can be ascertained, it is composed of graphene
76 plasmonic devices and an IR transparent microfluidic system (see details in Methods and
77 Figure S1). It is underlined that the high IR transmittance is the foundation for the
78 implementation of graphene plasmon-enhanced FTIR measurements. To achieve high IR
79 transparency in aqueous FTIR measurements, a 200 μm thick calcium fluoride (CaF_2) crystal
80 is chosen as the top window, whereas a SiO_2/Si substrate supports the graphene plasmonic
81 devices as the bottom window of the microfluidic chamber. More importantly, the height of
82 the microfluidic chamber at the graphene nanoribbon region ($100 \mu\text{m} \times 200 \mu\text{m}$) is designed
83 to be less than 5 μm for ensuring the steady flowing of the solution, as well as a high IR
84 transparency for the FTIR measurements. As a result, the IR absorbance of this microfluidic
85 chamber in the graphene nanoribbon region is less than 0.6 after filling with a protein solution
86 (the blue curve in Figure 1b). **We want to state that although CaF_2 crystal (working as a
87 transparent top window) is slightly dissolvable in water, it is found that the GP-aIR biosensor
88 shows high stability and consistent plasmonic response in water for more than 48 hours.**

89 To excite mid-IR plasmons, the graphene on the substrate is patterned to nanoribbon
90 arrays with widths between 50 nm and 100 nm by the electron beam lithography and the
91 oxygen plasma etching (details in Methods and Figure S2). Consequently, a pair of gold
92 electrodes with a titanium adhesion layer are evaporated on graphene as the source and drain
93 contacts, whereas another electrode is evaporated outside graphene to play the role of the gate
94 contact. The sub-nanometer thin electric double layer (EDL) formed on graphene and gold
95 electrodes in the protein solution, works as a dielectric layer of the capacitor so that the
96 graphene Fermi level can be modulated by varying gate voltage based on the parallel plate
97 capacitor theory. On top of that, a 200 nm thick PMMA film as the passivation layer is coated
98 on the source and drain electrodes for preventing the direct interaction of the electrode
99 materials with the aqueous solution and minimizing the current leakage. The extinction
100 spectra are obtained by modulating the gate voltage, i.e., $1-T_{EF}/T_0$, where T_{EF} is the
101 transmittance measured at a specific graphene Fermi level (EF), whereas T_0 is measured at the
102 graphene charge neutral point (CNP). In addition, there is no graphene plasmon excited at
103 CNP, and we employ T_0 measured at this condition as a background signal for the FTIR
104 measurement. Then, graphene nanoribbons are also doped by gating to excite graphene

105 plasmons, while the extinction spectrum is measured as $1-T_{EF}/T_0$, which is the plasmonic
106 response of the biosensor system. Thus, the background signal outside the plasmonic hotspot
107 region is eliminated.

108 The red curve in Figure 1b depicts a typical extinction spectrum as measured with 5
109 mg/mL protein solution after flowing for 1 hour. It is interesting to notice that two sharp dips
110 at 1545 cm^{-1} (marked with a green line) and 1655 cm^{-1} (marked with a purple line) on the
111 broad graphene plasmonic resonance peak can be detected. This comes from the destructive
112 interference of the graphene plasmon and the molecular vibrations. Therefore, the recorded
113 dip at 1545 cm^{-1} can be identified as the amide II band, which is a typical protein molecular
114 signature. However, the dip at 1655 cm^{-1} is at a region overlapped by the OH-bending mode
115 of the water and the amide I band of the protein. In order to shed light on these outcomes, the
116 region between the wavenumber from 1600 cm^{-1} to 1700 cm^{-1} is magnified and is compared
117 with the extinction spectrum of graphene plasmon in the normal saline (as is divulged in
118 Figure 1c). Without protein, the extinction spectrum of graphene plasmon in the normal saline
119 exhibits the water OH-bending mode at around 1645 cm^{-1} (the grey curve in Figure 1c), while
120 about 10 cm^{-1} shift to the 1655 cm^{-1} for the protein solution can also be recorded ([more details
121 can be found in Figure S3](#)).


122 Surprisingly, the signal strength of the protein exceeds that of water in the extinction
123 spectrum, implying the existence of more protein molecules than water molecules in the
124 plasmon hotspots on the graphene nanoribbons. By carrying out theoretical calculations (see
125 details in Figure S4 and Note 1 in Supporting Information), we found that the density of the
126 protein molecules is enriched by $\sim 3 \times 10^4$ times on the graphene nanoribbons compared with
127 that of the protein solution. This result implies the protein adsorption on the graphene surface.
128 Considering our previous works, the physisorption of molecules on graphene is regarded as
129 the driving force.^[12] More importantly, a hydrophobic-based graphene surface is more likely
130 to adsorb the protein molecules with hydrophobic groups.^[13] Furthermore, the enriched
131 protein molecules on graphene nanoribbons are schematically revealed on the right of Figure
132 1a. We have to underline that the electromagnetic field distribution is confined around the
133 graphene nanoribbons due to the manifestation of the plasmonic resonances (illustrated as the
134 inset shown in Figure 1c). Therefore, as the protein molecules are adsorbed on the
135 nanoribbon's structures, their IR absorptions are enhanced dramatically by the graphene
136 plasmon. Thus, our tunable graphene plasmon-enhanced FTIR platform discloses superior
137 sensitivity for the identification of proteins even in an aqueous solution.

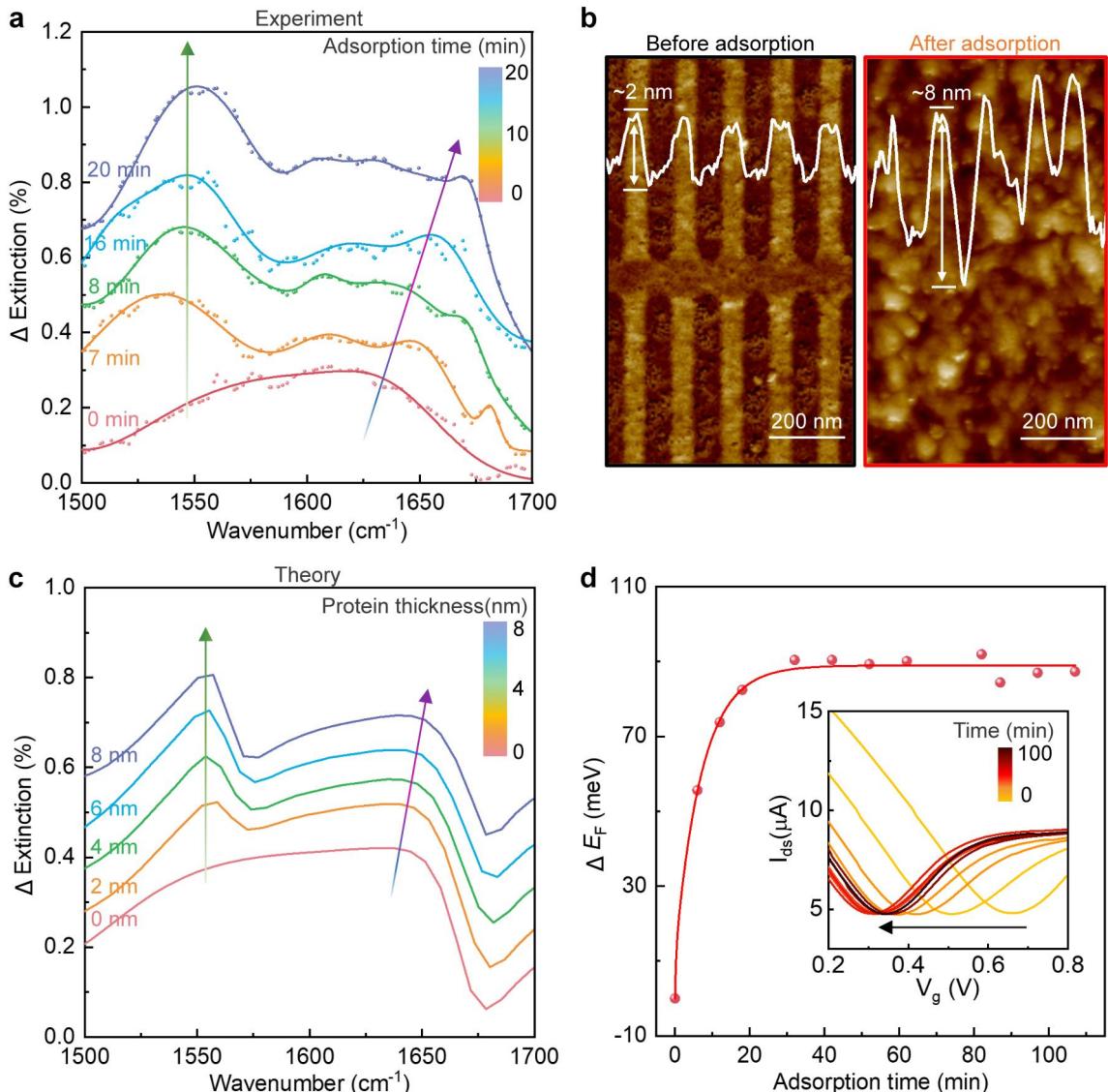
138
139 **Figure 1. The tunable graphene plasmon-enhanced FTIR platform. (a)** Schematic
140 diagram of the GP-aIR biosensor. The microfluidic system is integrated with graphene
141 plasmonic devices and an IR transparent microfluidic system, whereas a 200 μ m thick
142 calcium fluoride (CaF_2) crystal is chosen as the top window. Graphene plasmons are excited
143 using an incident infrared light and tuned in-situ by gating. The plasmon resonances are
144 coupled with proteins in the hotspots, thus the fingerprints of proteins are identified. **(b)**
145 Transmission spectrum of protein solution (5 mg/mL) in the microfluidic system with/without
146 graphene plasmon enhancement. **(c)** The magnified mid-IR region ($1600-1700 \text{ cm}^{-1}$) for
147 graphene plasmon-enhanced FTIR before (the grey curve) and after (the red curve) protein
148 adsorption in the aqueous solution. $E_F = -0.3 \text{ eV}$, graphene nanoribbon width is $\sim 60 \text{ nm}$, the
149 period is $\sim 120 \text{ nm}$; Inset: The near-field optical image of graphene nanoribbon at an IR
150 wavelength of $\lambda = 10.526 \mu\text{m}$ (scale bar is 200 nm).

152 Additionally, the liquid gate via electric double layer EDL permits the modulation of the
153 graphene plasmons in a wide frequency range. More specifically, a typical transfer
154 characteristic curve of the GP-aIR biosensor after the physisorption-based saturation of the
155 protein molecules in the aqueous solution is highlighted in Figure 2a (blue line). The graphene
156 Fermi energy can be calculated by applying a parallel plate capacitor model. The sub-
157 nanometer thin EDL is formed on both the graphene and gold electrodes in the protein
158 solution, which operates via a liquid gate and has a higher modulation efficiency than the
159 back-gate with the SiO_2 dielectric layer.^[14] The estimated liquid-gate capacitance of our GP-
160 aIR biosensor in the protein solution is $C_{top} \sim 385 \text{ nF/cm}^2$, whereas the corresponding Fermi
161 energy is depicted by the green curve in Figure 2a (see Note 2 in Supporting Information).

162 The extinction spectra of the GP-aIR biosensor at different Fermi levels are divulged in
163 Figure 2b. As can be ascertained, the plasmon resonance frequency is dynamically modulated
164 from the value of $\sim 1300 \text{ cm}^{-1}$ to 1700 cm^{-1} when the Fermi level is adjusted from $\sim 0.11 \text{ eV}$ to
165 0.25 eV . More importantly, the coupling strength of the protein vibrational mode is enhanced
166 as the detuning of the graphene plasmons and the molecular vibrational modes decrease,
167 which is consistent with the acquired numerical calculation results (the dashed curves in
168 Figure 2b). It is interesting to notice that when the resonance frequency of the graphene
169 plasmons is shifted from $\sim 1200 \text{ cm}^{-1}$ to 1560 cm^{-1} , the coupling strength between graphene
170 plasmon and amide II band is enhanced, while the dip at 1545 cm^{-1} is getting even deeper.
171 With the further increase of the Fermi level at the value of 0.25 eV , the dip at the 1545 cm^{-1}
172 becomes shallower, whereas the dip at 1655 cm^{-1} gradually deepens due to the stronger
173 coupling between the amide I band and graphene plasmons. Furthermore, the coupling
174 mechanism between graphene plasmons and molecular vibrational modes can be described as
175 a coupling process between two harmonic oscillators. Although the far-field incident IR light
176 cannot efficiently drive the molecular vibration due to the significant size mismatch, the
177 stronger oscillation properties of graphene plasmon can more efficiently drive the molecular
178 vibrations.^[8b, 15] Therefore, it is possible to tune the graphene Fermi energy and realize
179 selective plasmonic response in the mid-IR to identify protein vibrational fingerprints by
180 enforcing different gate voltages.

Figure 2. Selective probing of proteins with electrically tunable graphene plasmons. (a)

The transfer characteristic curve and the respective Fermi energy of the graphene plasmonic device **(b)** The solid curves are experiment results of graphene plasmon response at different gate voltages; the dashed curves are simulation results of graphene nanoribbon plasmon response are at different Fermi energies. The experimental results are collected after 1 mg/mL protein solution flowing for 2 hours, the graphene nanoribbon width is \sim 50 nm, and the period is \sim 100 nm.


3. Protein identification with ultrahigh sensitivity

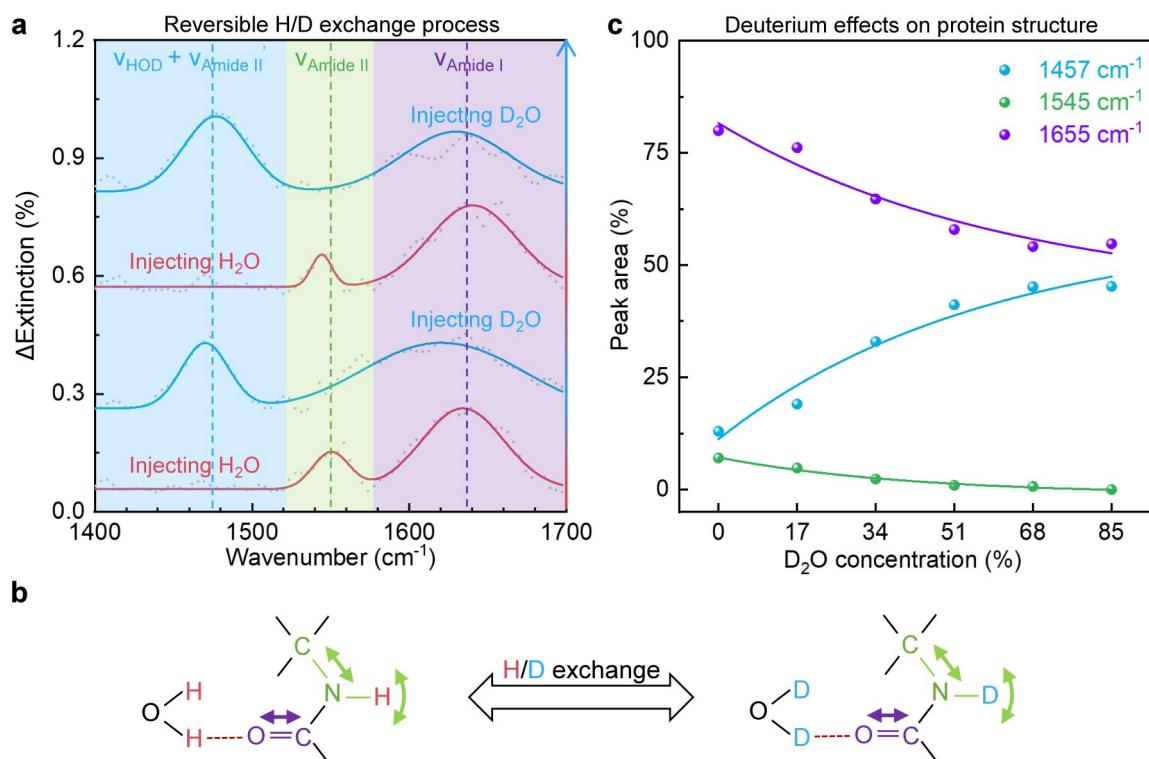
Here, we investigate the detection limit of the proposed GP-aIR biosensor by monitoring the adsorption process of protein on the graphene nanoribbons. When protein solution is injected into the GP-aIR biosensor, the protein molecules are gradually adsorbed on the graphene nanoribbons and finally reach a saturated state in 20 minutes. The extinction spectra of the GP-aIR biosensor, which are measured at different times during this process, are disclosed in Figure S5. To exhibit the plasmon-enhanced molecular signals more clearly, we extract them from the plasmon resonance peaks in the as-measured extinction spectra, as demonstrated in Figure 3a. At the beginning of injecting the protein solution (0 min), only one broad peak at around 1645 cm^{-1} can be recorded due to the OH-bending mode of the water. As the adsorption time becomes bigger (injecting the protein solution for 7 min, 8 min, 16 min, 20 min), the acquired IR response of the amide II band (\sim 1545 cm^{-1}) appears and constantly enhances as indicated by a green arrow. The IR response near 1645 cm^{-1} is blue shifting to 1655 cm^{-1} , which can be identified as the amide I band of protein (purple arrow).

204 To further understand the adsorption process, we perform simulations based on the
205 finite-element method (FEM) (see details in Methods). The obtained extinction spectra are in
206 excellent agreement with the respective experimental spectra when considering the adsorbed
207 protein layer with the following thickness values: 0 nm, 2 nm, 4 nm, 6 nm, and 8 nm (Figure
208 3c). We have also to underline that the thicknesses of the protein layers are consistent with the
209 experimentally measured values. On top of that, we carried out atomic force microscopy
210 (AFM) measurements on the graphene nanoribbons at different adsorption times. The GP-aIR
211 biosensor taken out of the protein solution is washed with deionized water several times and
212 dried in flowing nitrogen. As can be observed from Figure 3b and Figure S6, the height of the
213 graphene nanoribbons increases from ~2 nm to ~8 nm with increasing adsorption time, which
214 verifies that protein molecules are gradually adsorbed on the graphene nanoribbons.

215 The acquired electrical response can also support the measured results of the proposed
216 GP-aIR biosensor. The protein molecules are negatively charged in our protein solution since
217 its pH value (about 7) is larger than the isoelectric point of the bovine serum albumin (BSA)
218 protein (5.3).^[14a] Thus, there are electrons transferred to graphene film after the protein
219 adsorption. In order to exclude the n-doping effect of other ions in the protein solution,^[16]
220 normal saline is first injected inside until the CNP of the GP-aIR biosensor stabilizes, and
221 then the protein solution with the same NaCl concentration as normal saline is injected. The
222 transfer characteristics of the GP-aIR biosensor are measured at different times during the
223 protein adsorption process to calculate the induced change of the CNP value (the inset in
224 Figure 3d). As demonstrated in Figure 3d, the protein adsorption shifts the graphene Fermi
225 level toward the Dirac point. It changes fast at the beginning, and then the speed of the change
226 becomes slow and finally reaches saturated adsorption ($\Delta E_F \sim 90$ meV). The change law and
227 the time required for the saturated adsorption displayed by the electrical results corroborated
228 the extinction spectra of the GP-aIR biosensor.

229 These results point out that the GP-aIR biosensor is sensitive to the presence of proteins
230 in an aqueous solution due to the high sensitivity of the graphene plasmons (obvious response
231 for 2 nm protein), as well as to the adsorption of molecules on graphene. In addition, protein
232 solutions with different concentrations are measured, and the outcomes of 100 pg/mL and 100
233 ng/mL solutions are revealed in Figure S7. After adsorbing protein molecules in the solution
234 for 2 hours, both the amide I and amide II bands can be identified by the GP-aIR biosensor.

Figure 3. Identification of protein molecules during the adsorption process. (a) Plasmon-enhanced protein IR responses (Δ Extinction) at different adsorption times (0 min, 7 min, 8 min, 16 min, 20 min). The graphene nanoribbon width is $\sim 70 \text{ nm}$, the period is $\sim 140 \text{ nm}$, and the protein solution concentration is 5 mg/mL. **(b)** Morphologies and respective AFM height data of graphene nanoribbons before and after 1 hour of protein adsorption. **(c)** Simulated Δ Extinction of graphene plasmon-enhanced protein IR response with different adsorption thicknesses (0 nm, 2 nm, 4 nm, 6 nm, 8 nm). The parameters of the graphene device are the same as those in (a), and Fermi energy is set as -0.25 eV. **(d)** The Fermi energy changes of the GP-aIR biosensor during protein adsorption in the physiological condition, extracted from the transfer characteristic curves as shown in the inset.


4. Monitoring the H/D exchange process of proteins

248 H/D exchange is widely used in exploring protein structures and functions for identifying
249 and understanding the complex biological processes and developing pharmaceutical drugs.^[17]
250 The exposure of proteins to D₂O induces H/D exchange in disordered regions that lack stable
251 hydrogen bonding. We have to underline that the tightly folded elements are much more
252 protected from the H/D exchange resulting thus in slow isotope exchange.^[18] The
253 investigation of the interaction rate and sites of the H/D exchange process between the
254 hydrogens of the protein backbone and its surrounding solvent reflects not only the folded
255 state of the protein and its dynamics but also the intrinsic chemical properties of the
256 underlying amino acid sequence.^[17b] Nuclear magnetic resonance spectroscopy (NMR) is
257 currently the most important method to characterize proteins in solution by analyzing the
258 NMR signal of the nuclei of atoms in the protein, but it relies on expensive and complicated
259 equipment and strict sample preparation. A fast and non-invasive method to directly monitor
260 the proton exchange process in an aqueous solution is still missing.

261 Along these lines, we demonstrate that the tunable graphene plasmon-enhanced FTIR
262 platform can directly monitor the H/D exchange of nanoscale protein molecules within an
263 aqueous solution. Initially, the GP-aIR biosensor is flowing with a protein solution (solvent:
264 H₂O) for 1 hour for reaching saturated adsorption of the protein molecules on the graphene
265 nanoribbons. Subsequently, D₂O is injected into the microfluidic system for half an hour to
266 make sure a complete H/D exchange for the proteins. Then, H₂O and D₂O are alternately
267 injected for several times, while the extinction spectra of graphene plasmon are measured (see
268 Figure S8c). For comparison, the plasmon-enhanced protein responses are extracted and
269 disclosed in Figure 4a. The most obvious change in the acquired spectra is that the peak at
270 1545 cm⁻¹ corresponding to the amide II band disappears and a new peak appears at 1457 cm⁻¹
271 by replacing the H₂O with D₂O, and they recover when reinjecting H₂O. This provides direct
272 evidence for the H/D exchange. According to literature, the peak at 1457 cm⁻¹ is assigned to
273 the amide II band of deuterated protein, arising from the coupling of the N-H/D bending and
274 C-N stretching modes (Figure 4b).^[19] However, the intensity of the peak at 1457 cm⁻¹ is much
275 larger than that at 1545 cm⁻¹, which can be contributed to H-O-D (with bending modes at
276 1457 cm⁻¹) in D₂O. Due to the hygroscopicity of D₂O, there is also a small amount of H₂O in
277 our D₂O, as manifested by the IR spectrum (see Figure S8a). Additionally, during this H/D
278 exchange process, the amide I band (C=O stretching) of protein at 1655 cm⁻¹ has a slight red-
279 shift because hydrogen bonds effects vary on secondary structure in different solvents.

280 Furthermore, the H/D exchange process on the protein molecular structures in solution
281 by employing different concentrations (17%, 34%, 51%, 68%, 85%) of D₂O is investigated.

282 Their extinction spectra at each concentration are collected (see Figure S8d), while the
 283 plasmonic enhanced signals are extracted and plotted in Figure 4c. Compared with the
 284 extinction spectrum in H_2O , the intensities of both the amide I band (around 1655 cm^{-1}) and
 285 the amide II band (around 1545 cm^{-1}) decrease by increasing the concentration of D_2O . On top
 286 of that, the ratio of H/D exchange is consistent with the ratio of $\text{H}_2\text{O}/\text{D}_2\text{O}$, indicating that the
 287 H/D exchange process of nanoscale proteins occurs with high efficiency and reaches a
 288 dynamic equilibrium. The reason is that nanoscale proteins have a larger proportion of surface
 289 structures exposing to the environment. From this outcome, we can conclude that our
 290 approach exhibits high detection sensitivity and can monitor the proton exchange process of
 291 nanoscale-based proteins.

292
 293 **Figure 4. H/D exchange processes monitored by the GP-aIR biosensor.** (a) In-situ and
 294 real-time identification of proteins in H_2O and D_2O which are alternately injected for several
 295 times. The protein concentration is 1 mg/mL. The plasmon-enhanced protein responses
 296 ($\Delta\text{Extinction}$) are extracted from Figure S8c. (b) Illustration of $\text{D}_2\text{O}/\text{H}_2\text{O}$ induced molecular
 297 structure change and hydrogen bond interaction. (c) The plasmon-enhanced peak area of
 298 $\sim 1457\text{ cm}^{-1}$, $\sim 1545\text{ cm}^{-1}$, and $\sim 1655\text{ cm}^{-1}$ are extracted from graphene plasmon-enhanced
 299 FTIR at different D_2O concentrations (17%, 34%, 51%, 68%, 85%) in Figure S8d.

300

301 **5. Conclusion**

302 In conclusion, we adapt graphene plasmons to identify nanoscale protein fingerprints in
303 physiological conditions by employing a tunable graphene plasmon-enhanced FTIR platform.
304 The highly confined optical field and tunability of the graphene plasmons can essentially
305 enhance the light-matter interaction and recede water interference, which pushes the
306 sensitivity down to the value of ~2 nm thick proteins. Meanwhile, we exhibit the dynamic and
307 reversible H/D exchange on the protein molecular structure with the assistance of the GP-aIR
308 biosensor. Interestingly, D₂O is found to affect the nanoscale proteins structures by hydrogen
309 bonds effects on secondary structure and NH/ND exchange on the amide II band. The exciting
310 performance of our approach paves the way for the implementation of an in-situ studying
311 bioprocess within complex physiological conditions with ultrahigh sensitivity, which provides
312 a new strategy for studying the nano-bio interface and opens an inspiring outlook for both
313 nanotoxicology and nano-pharmacology.

314

315 **6. Methods**

316 *Graphene plasmonic IR biosensing in aqueous solutions:* The proposed graphene plasmonic
317 devices are composed of connected graphene nanoribbon arrays patterned on a SiO₂/Si
318 substrate by employing electron beam lithography and oxygen plasma etching. Then they are
319 encapsulated with the microfluidic system by utilizing O rings made of nitrile butadiene. The
320 graphene layer is grown on copper foil by chemical vapor deposition method and
321 consequently transferred to a 285 nm SiO₂/500 μm SiO₂ substrate using the wet transfer
322 method. The graphene film is in high quality, as confirmed by the optical image (see Figure
323 S2a), the scanning electron microscope image (see Figure S2b), and the Raman spectra (see
324 Figure S2c). The carrier mobility of the graphene is ~900 cm²/(V*s), which is extracted from
325 the transfer characteristic curve of the aGP-IR biosensor. Next, the nanoribbon arrays are
326 patterned in graphene by using electron-beam lithography (Vistec 5000+ES, Germany) and
327 then etched with oxygen plasma (SENTECH, Germany). The electrodes (5 nm Ti and 50 nm
328 Au) are patterned and evaporated using electron-beam lithography combined with electron
329 beam evaporation (OHMIKER-50B, Taiwan). Moreover, the in-situ IR microfluidic system is
330 custom-made by Zepptools Co. The thickness of the microfluidic chamber at the graphene
331 nanoribbon region (100 μm * 200 μm) is designed to be less than 5 μm controlled by a gold
332 spacer. In comparison, the thickness of the remaining region is 200 μm which is fabricated by
333 photolithography (SUSS Ma-6, Germany) and deep reactive ion etching (Oxford Plasmalab
334 System 100 ICP 180, England).

335 *Characterization of the graphene plasmon devices:* The morphologies and thicknesses of the
336 fabricated graphene nanoribbons are characterized by employing scanning electron
337 microscopy (NOVA Nano SEM 430) and atomic force microscopy (Bruker ICON2-SYS)
338 measurements. As far as the quality of the graphene and defect density of the nanoribbons are
339 concerned, they are measured by Raman spectroscopy (Horiba Jobin Yvon LabRAM HR800)
340 with laser excitation at 514 nm, laser power is 10%, and laser beam spot is $\sim 1 \mu\text{m}$. The
341 electrical properties are determined by using a source meter (Keithley 2636B). In addition,
342 FTIR transmission measurements are performed with Thermo Fisher Nicolet iN10 with an IR
343 microscope (10x objective). The aperture is set as $100 \mu\text{m} \times 200 \mu\text{m}$ for each measurement,
344 while the resolution is 8 cm^{-1} and scans are 128. The volume required to fill the microfluidic
345 system and permit the steady flow is $\sim 0.1 \text{ mL}$, measured by filling with a syringe pump. The
346 chamber is filled with a protein solution for static measurements, whereas the inlet and outlets
347 are sealed to prevent flow. During the flowing measurements, a constant flow rate of $0.0083 \text{ mL} \cdot \text{min}^{-1}$
348 is maintained. The Keithley 2636B source-meter is also employed to tune the top
349 gate voltage.

350

351 *Near-Field Optical Microscopy Measurements:* Near-field imagining is conducted by using a
352 commercially available s-SNOM (Neaspec GmbH), equipped with IR lasers ($890\text{-}1700 \text{ cm}^{-1}$).
353 The P-polarized IR light from the monochromatic quantum cascade lasers is focused via a
354 parabolic mirror onto both the tip and sample at an angle of 60° to the surface normal. The
355 probes are made initially for metalized atomic force microscope (AFM) with an apex radius
356 of $\sim 20 \text{ nm}$ (Nanoworld).

357

358 *Electromagnetic simulations and theory:* The electromagnetic simulations are conducted by
359 using the commercial field solver, COMSOL Multiphysics. The graphene optical response is
360 described via the Drude model. The employed protein solution parameters, including
361 oscillator strength to each FTIR peak, are extracted, and fit the BSA film's measured IR
362 absorbance. The simulation results are calculated by constructing a model utilizing a finite
363 element electromagnetic simulation method. The graphene nanoribbon is modeled as a
364 material with finite thickness and an equivalent relative permittivity distribution that depends
365 on the thickness. The equal relative permittivity ϵ_g is derived from the surface conductivity σ
366 of the graphene, calculated by the following expression: $\epsilon_g = 1 + i\sigma/\epsilon_0\omega t_g$, where ϵ_0 is the
367 permittivity of the free space, ω is the angular frequency of the incident light, and t_g is the
368 graphene layer thickness. The graphene is modeled as a thin film and treated as the transition

369 boundary condition with a thickness of just 0.34 nm. At room temperature (T=300 K), the
370 graphene surface conductivity can be approximately calculated from the Drude model:^[20]

$$\sigma = \frac{ie^2 EF}{\pi \hbar^2 (\omega + i/\tau)}$$

371 e is the electron charge, \hbar is the reduced Planck constant, and EF is the Fermi energy of
372 graphene. The relaxation time $\tau = \mu * EF/e\nu_F$, where $\nu_F = 1 \times 10^6$ m/s is the Fermi velocity,
373 and $\mu \sim 900$ cm²/(V*s) is the carrier mobility extracted from experimental results.

374 The protein permittivity is retrieved from the experimental results by adjusting a Lorentzian
375 permittivity:^[7c, 8a]

$$\epsilon_{protein} = \epsilon_{\infty} + \sum_{j=1}^2 \frac{S_k^2}{\omega_j^2 - \omega^2 - i\Gamma_j \omega}$$

376 The extracted protein permittivity parameters from the experimental protein IR spectrum are:
377 $\epsilon_{\infty} = 2.08$, $\omega_1 = 1655$ cm⁻¹, $\omega_2 = 1545$ cm⁻¹, $S_1 = 213$ cm⁻¹, $S_2 = 124$ cm⁻¹, $\Gamma_1 = 55.6$ cm⁻¹, $\Gamma_2 = 62$ cm⁻¹.
378 The simulation outcomes are in good agreement with the experimental absorption data. In the
379 protein solution, the water IR absorption signal is much stronger than protein molecules.
380 Assuming that proteins are adsorbed on the graphene surface and considering the field
381 contribution of the graphene plasmons, a protein layer with a thickness of 8 nm and a water
382 layer with a thickness of 50 nm is utilized in the model for simplifying the calculation.

383

384 *The chemicals sampling:* The normal saline is 0.9% NaCl solution is prepared by dissolving
385 NaCl (purity larger than 99.5%) in deionized water with a 100 mL volumetric flask. Moreover,
386 the protein solution is prepared by dissolving bovine serum albumin (from KEH,
387 Biotechnology Grade) in normal saline. D₂O is purchased from Macklin with 99.9 atom % D.

388

389

390

391

392 Acknowledgements

393 This work is supported by the National Natural Science Foundation of China (51925203,
394 52022025, 52102160, 51972074, 11674073, and U2032206), the Key Program of the Bureau
395 of Frontier Sciences and Education, Chinese Academy of Sciences (QYZDB-SSW-SLH021),
396 the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000
397 and XDB36000000), the Key Research Program of the Chinese Academy of Sciences (ZDBS-
398 SSW-JSC002), Youth Innovation Promotion Association C.A.S., C.A.S. Interdisciplinary

399 Innovation Team (JCTD-2018-03), and Academy of Finland (314810, 333982, 336144 and
400 336818), the Academy of Finland Flagship Programme (320167, PREIN), the European
401 Union's Horizon 2020 research and innovation program (820423, S2QUIP; 965124,
402 FEMTOCHIP), the EU H2020-MSCA-RISE-872049 (IPN-Bio), The Business Finland
403 (ALDEL), and ERC (834742).

404

405

406

407

408

409

410 References

411 [1] K. A. Dawson, Y. Yan, *Nat. Nanotech.* **2021**, 16, 229.

412 [2] a) M. P. Monopoli, C. Åberg, A. Salvati, K. A. Dawson, *Nat. Nanotech.* **2012**, 7, 779;
413 b) S. Schöttler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailänder, F.
414 R. Wurm, *Nat. Nanotech.* **2016**, 11, 372; c) P. M. Kelly, C. Åberg, E. Polo, A. O'Connell, J.
415 Cookman, J. Fallon, Ž. Krpetić, K. A. Dawson, *Nat. Nanotech.* **2015**, 10, 472.

416 [3] a) B. S. Gomes, B. Simões, P. M. Mendes, *Nat. Rev. Chem* **2018**, 2, 0120; b) S. Tenzer,
417 D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K.
418 Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S. K. Knauer, R. H. Stauber,
419 *Nat. Nanotech.* **2013**, 8, 772; c) F. Chen, G. Wang, J. I. Griffin, B. Brenneman, N. K. Banda,
420 V. M. Holers, D. S. Backos, L. Wu, S. M. Moghimi, D. Simberg, *Nat. Nanotech.* **2017**, 12,
421 387.

422 [4] B. H. Stuart, *Infrared spectroscopy: fundamentals and applications*, John Wiley &
423 Sons, **2004**.

424 [5] a) D. Etezadi, J. B. t. Warner, H. A. Lashuel, H. Altug, *ACS Sens.* **2018**, 3, 1109; b) I.
425 Pupeza, M. Huber, M. Trubetskov, W. Schweinberger, S. A. Hussain, C. Hofer, K. Fritsch, M.
426 Poetzlberger, L. Vamos, E. Fill, T. Amotchkina, K. V. Kepesidis, A. Apolonski, N.
427 Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Zigman, F. Krausz, *Nature*
428 **2020**, 577, 52; c) A. G. Brolo, *Nat. Photon.* **2012**, 6, 709.

429 [6] a) J. D. S. Goulden, D. J. Manning, *Nature* **1964**, 203, 403; b) R. Lu, W.-W. Li, B.
430 Mizaikoff, A. Katzir, Y. Raichlin, G.-P. Sheng, H.-Q. Yu, *Nat. Protoc.* **2016**, 11, 377.

431 [7] a) R. Adato, H. Altug, *Nat. Commun.* **2013**, 4, 2154; b) O. Limaj, D. Etezadi, N. J.
432 Wittenberg, D. Rodrigo, D. Yoo, S. H. Oh, H. Altug, *Nano Lett.* **2016**, 16, 1502; c) A. John-
433 Herpin, A. Tittl, H. Altug, *ACS Photonics* **2018**, 5, 4117; d) D. Rodrigo, A. Tittl, N. Ait-
434 Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A.
435 Lashuel, H. Altug, *Nat. Commun.* **2018**, 9, 2160; e) Y. Jahani, E. R. Arvelo, F. Yesilkoy, K.
436 Koshelev, C. Cianciaruso, M. De Palma, Y. Kivshar, H. Altug, *Nat. Commun.* **2021**, 12, 3246;
437 f) A. John-Herpin, D. Kavungal, L. von Mücke, H. Altug, *Adv. Mater.* **2021**, 33, 2006054; g)
438 C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, *Nat. Mater.*
439 **2012**, 11, 69.

440 [8] a) O. L. Daniel Rodrigo, Davide Janner, Dordaneh Etezadi, F. Javier García de
441 Abajo, Valerio Pruneri, Hatice Altug, *Science* **2015**, 349, 165; b) X. Yang, Z. Sun, T. Low, H.
442 Hu, X. Guo, F. J. Garcia de Abajo, P. Avouris, Q. Dai, *Adv. Mater.* **2018**, 30, e1704896.

443 [9] a) I. H. Lee, D. Yoo, P. Avouris, T. Low, S. H. Oh, *Nat. Nanotech.* **2019**; b) H. Hu, X.
444 Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, Q. Dai, *Nat. Commun.* **2016**, 7, 12334; c) X.
445 Yang, F. Zhai, H. Hu, D. Hu, R. Liu, S. Zhang, M. Sun, Z. Sun, J. Chen, Q. Dai, *Adv. Mater.*
446 **2016**, 28, 2931; d) H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. Garcia de Abajo, T.
447 Low, Z. Sun, Q. Dai, *Nat. Commun.* **2019**, 10, 1131.

448 [10] a) Y. Hu, Á. I. López-Lorente, B. Mizaikoff, *ACS Photonics* **2018**, 5, 2160; b) B.
449 Zheng, X. Yang, J. Li, C.-F. Shi, Z.-L. Wang, X.-H. Xia, *Anal. Chem.* **2018**, 90, 10786.

450 [11] S.-H. Oh, H. Altug, X. Jin, T. Low, S. J. Koester, A. P. Ivanov, J. B. Edel, P. Avouris,
451 M. S. Strano, *Nat. Commun.* **2021**, 12, 3824.

452 [12] a) H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. García de Abajo, T. Low, Z.
453 Sun, Q. Dai, *Nat. Commun.* **2019**, 10, 1131; b) K. Khaliji, S. R. Biswas, H. Hu, X. Yang, Q.
454 Dai, S.-H. Oh, P. Avouris, T. Low, *Physical Review Applied* **2020**, 13, 011002.

455 [13] C. J. Russo, L. A. Passmore, *Nat. Methods* **2014**, 11, 649.

456 [14] a) Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, *Nano Lett.* **2009**, 9, 3318; b)
457 Y.-Q. Bie, J. Horng, Z. Shi, L. Ju, Q. Zhou, A. Zettl, D. Yu, F. Wang, *Nat. Commun.* **2015**, 6,
458 7593.

459 [15] F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen, *Chem. Rev.* **2017**, 117, 5110.

460 [16] a) S. Li, J. Li, Y. Wang, C. Yu, Y. Li, W. Duan, Y. Wang, J. Zhang, *Nat. Electron.*
461 **2021**, 4, 254; b) A. Ahmadian Yazdi, J. Xu, V. Berry, *ACS Nano* **2021**, 15, 6998; c) X. Jia, M.
462 Hu, K. Soundarapandian, X. Yu, Z. Liu, Z. Chen, A. Narita, K. Müllen, F. H. L. Koppens, J.
463 Jiang, K.-J. Tielrooij, M. Bonn, H. I. Wang, *Nano Lett.* **2019**, 19, 9029.

464 [17] a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, *Angew. Chem. Int. Ed.* **2018**, 57, 1758;
465 b) G. R. Masson, J. E. Burke, N. G. Ahn, G. S. Anand, C. Borchers, S. Brier, G. M. Bou-
466 Assaf, J. R. Engen, S. W. Englander, J. Faber, R. Garlish, P. R. Griffin, M. L. Gross, M.
467 Guttman, Y. Hamuro, A. J. R. Heck, D. Houde, R. E. Iacob, T. J. D. Jørgensen, I. A.
468 Kaltashov, J. P. Klinman, L. Konermann, P. Man, L. Mayne, B. D. Pascal, D. Reichmann, M.
469 Skehel, J. Snijder, T. S. Strutzenberg, E. S. Underbakke, C. Wagner, T. E. Wales, B. T.
470 Walters, D. D. Weis, D. J. Wilson, P. L. Wintrode, Z. Zhang, J. Zheng, D. C. Schriemer, K. D.
471 Rand, *Nat. Methods* **2019**, 16, 595; c) Y. Loh Yong, K. Nagao, J. Hoover Andrew, D. Hesk, R.
472 Rivera Nelo, L. Colletti Steven, W. Davies Ian, W. C. MacMillan David, *Science* **2017**, 358,
473 1182.

474 [18] L. Konermann, J. Pan, Y.-H. Liu, *Chem. Soc. Rev.* **2011**, 40, 1224.

475 [19] J. J. Weiss, *Nature* **1964**, 202, 83.

476 [20] a) M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A.
477 Ward, *Appl. Opt.* **1983**, 22, 1099; b) D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri,
478 H. Altug, *Light Sci. Appl.* **2017**, 6, e16277.