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Figure 1. Typical plasmonic materials and their corresponding plasmonic responses.

The plasmon damping largely depends on the plasma frequency and carrier mobility.

TI: topological insulator. We present parameters for metals (Au, Ag, Al, K, Na; Au,

Ag, Cu, Na, Al; Pt, Pb, Pd, and Ti), a superconductor (YBa>CuzO7.4), graphene, two

TIs (HgTe and BixSes), and various semiconductors (InoO3/Sn0O, ZnO, Ge, Si, [1I-V’s,

and SiC). The relationship between the size of a dipole plasmon antenna made of these

materials and radiative damping is schematically plotted in the upper part. Typical

antenna sizes of graphene, semiconductor, and metals are indicated.
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Table 1. Comparing carrier mobility, adjustability, confinement ratio, and propagation

length of SEIRA materials (metal, semiconductor, superconductor, topological

insulator, graphene, and carbon nanotube). Plasmon wave vector g = g'+ ig", the real

part ¢' is used to define plasmon wavelength Ap=2xn/ q', and the imagine part q" is used

to define propagation length Lp=1/(2q"). Confinement ratio=Ar/Ap, AMr free space

wavelength, and Quality factor: Q= g'/q".
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Table 2 Properties of graphene plasmon in different plasmon wavelength.
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Figure 2. (a) Three-dimensional energy band structure of graphene. (b) Comparison of

dispersion relation between graphene plasmon and metal plasmon.
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Figure3. Graphene Plasmon(a)High field confinement; Percentage of space-integrated

near-field intensity confined within a volume extending a distance d outside the

nanoantenna. (b)Low damping; The intrinsic Dirac plasmon lifetime 1, is plotted as a

function of electron density n and for a fixed photon energy hwpn. (c) Broad spectral

response. The graphene plasmon response by changing the diameter of graphene flakes.

(d-g) Tunability; (d) Extinction spectra of graphene with different strip widths of SiO2

substrate, vertical dashed lines indicate graphene optical phonon frequencies; (e) (f)

CaF, substrates, gate voltage and strip width control of graphene plasmons; (g)

Extinction spectrum of directly stacked 1 layer, 2 layers and 3 layers of graphene

corresponding to the plasmon.
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Figure 4. (a) Graphene plasmon-enhanced infrared bio-sensing of protein. (b) Infrared

fingerprint region enhanced detection of PEO vibration modes. (c) Flexible mica based

graphene infrared sensor. (d, €) Acoustic graphene plasmon enhanced infrared detection.

(f) Suspended graphene to be infrared window.
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Figure 5. (a) Metal plasmon detection of hydrogen. (b) Graphene plasmon infrared

sensor for the detection of acetone and hexane vapor. (c) Label-free identification of

gas by infrared sensors based on graphene plasmon.
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Figure 6. (a) Graphene plasmon omnidirectional sensing capability. (b) Graphene
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Figure 7. Refractive index sensing(a) Reflectance from the structure for different values

of the refractive index on top of the graphene. (b) Ag-graphene hybrid structure for

refractive index sensing. (c) The transmission spectra of the Fano metamaterials with

H, T, and HC order modes and simulated transmission spectra of the HC Fano

resonance mode with different analyte (marked by refractive indices).
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Abstract

Infrared spectroscopy can accurately reflect the information of

molecular vibration, and it is an important technology to characterize

the composition and structure of materials. However, since the

interaction between nanomaterials and infrared light is very weak due

to the significant size mismatch, it is challenging to obtain the spectral

information of nanomaterials in the field of infrared spectroscopy. The

plasmon is a collective electron oscillation on the surface of the

material inducing by the incident light, and it has excellent light field

confinement, which can significantly enhance the interaction between

light and nanomaterials. Graphene plasmon has prominent properties,

such as high light field confinement, dynamic adjustment, and low
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intrinsic attenuation, which is an important solution to enhance the
infrared absorption of nanomaterials. This article systematically
introduces the infrared plasmon materials system. Then it summarizes
the characteristics of graphene plasmon and their advantages on
surface enhanced infrared spectroscopy, and it discusses the recent
important researches and applications of graphene plasmon enhanced
infrared spectroscopy in the world, including biochemical detection,
gas Identification, refractive index sensing, etc. Further prospects for
the development and potential applications of graphene plasmon
enhanced infrared spectroscopy are also demonstrated.

Keywords: Graphene, Plasmon, Surface enhanced spectroscopy, Infrared

spectroscopy
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