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Fig. 1. (color online) (a) Ilustration of a typical ab-
sorption spectrum of doped graphene; (b) illustration

of the various optical transition processes [8].
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Fig. 2. (color online) (a) Top- and side-view illustration of a typical graphene micro-ribbon array; (b) control

of terahertz resonance of plasmon excitations through electrical gating; (c¢) change of transmission spectra

with different graphene micro-ribbon widths 4],
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Fig. 3. (color online) (a) The illustration of the verification of an antenna-based graphene plasmon Launcher [16]; (b)

basic work principles of a s-SNOM [25]; (c) the topography of a concave antenna on graphene; (d) experimental near-

field images Re(Fs,p) of a concave antenna extremity; (e) calculated near-field images Re(E.) of the concave antenna,
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Fig. 4. (color online) Plasmon-phonon coupling: (a) graphene nanoribbon arrays with different filling factors, the
ribbon widths are all 140 nm; (b) extinction spectra taken from graphene nanoribbon arrays in (a); (c) simulated
coupling strength of graphene plasmon as a function of graphene filling factor, the plasmon-phonon hybridization
decreases the coupling strength heavily, (a)—(c)[?3]; (d) plasmon lifetimes of graphene on diamond-like carbon
(DLC) (red dots) and SiO2 (grey dots) as functions of plasmon resonance frequencies; (e) illustration of the plasmon

damping process through the emission of an optical phonon, which brings it into the intraband Landau damping

regime, electron-hole pairs are created, (d) and (e) are from Ref. [37].
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Fig. 5. (color online) Graphene plasmon regulated by designed substrate structures: (a) and (b) controlling

graphene plasmon by designing the dielectric function of substrate following transformation optics [28]; (c)

schematic of silicon-diffractive grating-assisted graphene plasmon excitation by guided-wave resonance; (d)

extinction spectra obtained from graphene in (c) [#1].
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Fig. 6. (color online) (a) Scheme of graphene nanodisk plasmon devices [*9); (b) extinction spectra of the nanodisk

arrays under different applied voltages [501; (c) extinction spectra of in stacked plasmonic devices with one, two

and five graphene layers; (d) fitted Drude weight and scattering width as a function of graphene layer number

in the stacked devices, Drude weight increases linearly with layer number and scattering width stays constant;

(e) extinction spectra of tunable terahertz filters using stacked devices with five graphene layers, the resonance

frequency can be tuned by varying the diameter of the disks; (f) extinction spectra of a graphene polarizer for light

polarizations along (§ = 0°, the gray line) and perpendicular (§ = 90°, the red line) to the microribbons; (c)—(f) [P1].
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Fig. 7. (color online) (a) The phonon energy is enhanced at least 5 times via the coupling of optical phonon

itself and plasmon excited by the bilayer graphene nano-structures, the gray curve indicates the situation

without plasmon enhancing [53]; (b) the plasmon in monolayer graphene strengthens the infrared absorption

of 8 nm thick PMMA layer, attenuation spectra for light in resonance with the graphene plasmon polarized

perpendicular (red line) and parallel (green line) to the graphene nanoribbons, and absence of graphene

[56]

nanoribbons (blue line) [°4); (c) a representive graphene sensor structure 6.
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Abstract

Graphene plasmons have aroused a great deal of research interest in recent years due to their unique features such
as electrical tunability, ultra-strong field confinement and relatively low intrinsic damping. In this review paper, we
summarize the fundamental optical properties of localized and propagating plasmons supported by graphene, and the
experimental techniques for excitation and detection of them, with focusing on their dispersion relations and plasmon-
phonon coupling mechanism. In general, the dispersion of graphene plasmons is affected by the Fermi level of graphene
and the dielectric environment. The graphene plasmons can exist in a broad spectrum range from mid-infrared to
terahertz. This has been experimentally verified for both the localized and propagation plasmons in graphene. On the
one hand, the excitation frequency and confinement of localized plasmons supported by graphene micro/nano-structures
are constrained by the structural geometry. Additionally, influenced from the tunability of the optical conductivity of
graphene, the excitation frequency of graphene plasmons can be tuned by electrostatic or chemical doping. On the
other hand, propagating plasmons have been launched and detected by using scattering-type scanning near-field optical
microscopy. This technique provides the real-space imaging of the electromagnetic fields of plasmons, thereby directly
confirming the existence of the graphene plasmons and verifying their properties predicted theoretically. In a similar
regime, the launching and controlling of the propagating plasmons have also been demonstrated by using resonant metal
antennas. Compared to metal plasmons, graphene plasmons are much more easily affected by the surroundings due
to their scattering from impurity charges and coupling with substrate phonons. In particular, graphene plasmons can
hybridize strongly with substrate phonons and there are a series of effects on plasmon properties such as resonance
frequency, intensity and plasmon lifetime. The designing of the dielectric surrounding can effectively manipulate the
graphene plasmons. Finally, we review the emerging applications of graphene plasmon in the mid-infrared and terahertz,

such as electro-optical modulators and enhanced mid-infrared spectroscopy.

Keywords: graphene plasmon, electromagnetic field enhancement, electro-optical modulation
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