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Hyperbolic whispering-gallery phonon 
polaritons in boron nitride nanotubes

Xiangdong Guo1,2,10, Ning Li3,10, Xiaoxia Yang    1,2  ,      Ruishi Qi3, Chenchen Wu1,2, 
Ruochen Shi3, Yuehui Li3, Yang Huang4, F. Javier García de Abajo     5,6  ,    
En-Ge Wang     7,8,9, Peng Gao     3,7    & Qing Dai     1,2 

Light confinement in nanostructures produces an enhanced light–matter 
interaction that enables a vast range of applications including single-photon 
sources, nanolasers and nanosensors. In particular, nanocavity-confined 
polaritons display a strongly enhanced light–matter interaction in the 
infrared regime. This interaction could be further boosted if polaritonic 
modes were moulded to form whispering-gallery modes; but scattering 
losses within nanocavities have so far prevented their observation. Here, 
we show that hexagonal BN nanotubes act as an atomically smooth 
nanocavity that can sustain phonon-polariton whispering-gallery modes, 
owing to their intrinsic hyperbolic dispersion and low scattering losses. 
Hyperbolic whispering-gallery phonon polaritons on BN nanotubes 
of ～4 nm radius (sidewall of six atomic layers) are characterized by an 
ultrasmall nanocavity mode volume (Vm ≈ 10–10λ0

3    at an optical wavelength 
λ0 ≈ 6.4 μm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN 
nanotubes could become an important material platform for the realization 
of one-dimensional, ultrastrong light–matter interactions, with exciting 
implications for compact photonic devices.

The light–matter interaction is the basis of optics, where it has fuelled 
a long list of breakthrough applications, including nanolasers1,2, 
nano-biosensors3–5, enhanced optical nonlinearities6,7 and the explo-
ration of cavity quantum electrodynamics8–10. Consequently, the dis-
covery of novel light confinement regimes is vital to further enhance 
light–matter interactions11–13, whose strength can be quantified by the 
dimensionless Purcell factor ~Q/Vm (refs. 14–17), approximated as the ratio 
of the quality factor Q to the mode volume Vm = V/λ0

3 (normalized using 

the light wavelength λ0; V is optical volume)18–20. Therefore, exploring 
optical modes with an elevated Q and ultrasmall mode volume provides 
a route to increasing the Purcell factor for enhancing light–matter 
interactions.

Optical cavities can trap light based on geometry to host 
whispering-gallery modes with high quality factors (Q ≈ 108)2 1,22, but 
this comes at the expense of large mode volumes. Plasmon modes 
associated with collective electron oscillations at material surfaces 
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To directly observe deep subwavelength HWG-PhP modes in a 
single BNNT, we employ the AFM-IR technique39–41. It is an effective 
optical means to measure nano-infrared (nanoIR) signals, which com-
bines the spatial resolution of AFM with the specificity of absorption 
spectroscopy (shown in Fig. 2a; details in the Methods)42,43. In Fig. 2b, 
the nanoIR signals of hyperbolic phonon polaritons (HPhPs) at dif-
ferent spatial positions on a BNNT are characterized by AFM-IR (tube 
radius R = 18 nm; details in Supplementary Fig. 3). The spectra from 
three points reveal a fixed resonance peak at 190 meV (~1,530 cm−1, 
indicated by the black arrow in Fig. 2b), stemming from vibrations along 
the radial direction that are insensitive to the position along the axis of 
the BNNT. In addition, this resonance mode can be detected in BNNTs 
with different radii (Supplementary Fig. 3) and is in good agreement 
with the theoretically predicted HWG-PhP mode in Fig. 1c.

Scattering-type scanning near-field optical microscopy 
(s-SNOM30,44; details in the Methods) is employed to investigate the 
intensity distribution of resonance modes on the same BNNT in real 
space. The interference patterns in Fig. 2c are generated along the axis 
of the BNNT, corresponding to the longitudinal FP resonance mode 
at 1,480 cm−1. Notably, the longitudinal FP modes of BNNTs have also 
been observed in previous s-SNOM works demonstrating imaging 
and dispersion mapping of such one-dimensional excitations45–49. In 
our experiment, this interference pattern is reshaped from the centre 
to the sidewalls as the resonance frequency is varied from 1,480 to 
1,530 cm−1 (Fig. 2d and the full evolution in Supplementary Fig. 4). 
From the electromagnetic field intensity distribution extracted along 
the transverse x direction of the BNNT (grey curves in Fig. 2c,d), the 
HWG-PhP mode is shown to display two peaks, while the FP mode 
presents only one peak (details of feature analysis in Supplementary 

can greatly compress light into nanoscale volumes, but their quality 
factors are substantially smaller (Q < 102)2 3,24 because of intrinsic losses. 
As a compromise between these two extreme regimes, the coupling 
of plasmons to dielectric nanocavities to form whispering-gallery 
modes constitutes a promising pathway to improve the Purcell  
factor25,26, although the trade-off between mode volume and  
quality factor is still limited by intrinsic losses in the plasmon-supporting  
materials18,27–29.

Like plasmons, phonon polaritons in hexagonal BN (hBN) possess 
a bosonic nature, but they exhibit much lower intrinsic losses30–33 and 
display isofrequency curves34–36 of hyperbolic morphology that can 
supply the large wave vectors that are necessary for mode confine-
ment down to ultrasmall nanocavities. We thus expect hyperbolic 
whispering-gallery phonon polaritons (HWG-PhPs) with an ultrahigh 
Purcell factor to be enabled when wrapping a hBN film into a hBN 
nanotube (BNNT).

Guided by this intuition, in this work we experimentally dem-
onstrate ultra-confined HWG-PhP modes propagating around the 
wall of BNNTs by means of electron energy-loss spectroscopy (EELS).  
The quality factors of HWG-PhP modes, measured on the same samples 
by using the atomic force microscopy (AFM)-based infrared spectros-
copy (AFM-IR) technique, can reach values as high as ~220 because of 
the absence of scattering channels in the seamless atomically smooth 
nanocavities. HWG-PhP modes can be sustained on a ~4-nm-radius 
(sidewall of six atomic layers) BNNT, which exhibits an ultrasmall  
volume Vm ≈ 10–10, leading to an ultrahigh Purcell factor Q/Vm ≈ 1012. Our 
work supports HWG-PhP modes on nanotubes as a powerful platform 
to realize record-high Purcell factors, thus offering a paradigm for 
applications in compact nanophotonic devices, such as nanosensors, 
nanolasers and optical filters.

Prediction and observation of HWG-PhP modes in 
a single BNNT
Multi-walled BNNTs constitute atomically smooth nanocavities, as 
illustrated by a six-layer BNNT in Fig. 1a (high-resolution transmission 
electron microscopy (TEM) image). In this work, BNNTs were grown by 
chemical vapour deposition (details in the Methods) and with various 
radii (Supplementary Fig. 1). These BNNTs can be regarded as a sheet 
of hBN being rolled into tubular geometries that inherit the hyperbolic 
phonon-polariton dispersion of hBN (details in Supplementary Note 
1 and Supplementary Fig. 2). Since hyperbolic isofrequency curves 
are unbound in the wave vector (in contrast to isotropic materials, 
which typically display bound spherical or elliptical isofrequency 
curves), the propagation or interference resonances of a high wave 
vector can be supported on ultrasmall hBN structures. Notably, since 
the wave vector of the HWG-PhP mode of a BNNT is much smaller than 
1/d (1/d > 20,000k0, with d being the out-of-plane atomic layer spac-
ing and k0 being the free-space wavevector), the effective permittiv-
ity of the tube does not require non-local corrections37,38. Thus, the 
long-range propagation of highly confined hyperbolic rays on a hBN 
film can form the sought-after whispering-gallery modes on a BNNT, 
as shown in Fig. 1b. The detected HWG-PhP modes are also the fun-
damental azimuthal resonance modes. The mode can be observed 
in frequency space with an ultra-sensitive spatially resolved spec-
troscopy technique. The spectra of hyperbolic phonon polaritons in 
BNNTs with different axis lengths (L = 150 and 300 nm) are predicted 
by the theoretical simulations shown in Fig. 1c. These peaks can be 
recognized as two types of phonon polaritons: Fabry–Perot (FP) 
cavity modes and HWG-PhP modes in the high-frequency range. As 
FP modes resonate along the longitudinal axis, their peak frequen-
cies are shifted with the length of the BNNT. By contrast, HWG-PhP 
modes propagate around the circular wall of the tube and are thus 
independent of the tube length. We conclude that the high-frequency 
peak indicates that there is a HWG-PhP mode confined to the tube  
nanocavity.
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Fig. 1 | HWG-PhPs in a single BNNT. a, Schematic diagram of a one-dimensional 
BNNT and TEM image. BNNTs are composed of several atomic layers, such 
as the six-walled tube shown in the image. The scale bar is 5 nm. b, Near-field 
distribution dominated by hyperbolic whispering-gallery polaritons in a BNNT. 
The excitation source is a radially oriented dipole (double black arrow). E is the 
electric field. The scale bar is 4 nm. c, Simulated EELS spectra of one-dimensional 
BNNT hyperbolic whispering-gallery modes for two different tube lengths, L. FP 
modes (left features below ~1515 cm-1, and scheme in the inset) vary with L,  
in contrast to the HWG-PhP modes (right feature above ~1515 cm-1).
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Fig. 4). We stress that the separation between the two peaks is much 
larger than the BNNT diameter (about 36 nm). This broadening in the 
horizontal width of the s-SNOM images is due to the effect of the finite 
size and round shape of the tip in the s-SNOM experiments, similar to 
those in AFM measurements50. This interference pattern at 1,530 cm−1 
is consistent with the predicted near-field distribution of a HWG-PhP 
in Fig.1b, which is another piece of solid evidence that an HWG-PhP 
mode is supported on a BNNT.

Quantitative dispersion of HWG-PhP modes
The HWG-PhP mode on BNNTs has been identified using near-field 
optics techniques with resonant spectra and a near-field distribution. 
To further analyse its dispersion relation, which is highly correlated 
with the geometry of the nanocavity formed by BNNTs, monochro-
matic EELS incorporated in a scanning TEM (STEM) with angstrom 
spatial resolution is employed (details in Methods). Polariton signals 
can be characterized by scanning the electron beam (e-beam) over 
the spatial extension of the sample in the EELS experiment. Thus, we 
perform systematic STEM–EELS measurements by moving the e-beam 
along directions parallel (longitudinal) and perpendicular (transverse) 
with respect to the axis of the BNNT, as schematically illustrated in  
Fig. 3a,b. Under aloof excitation (that is, with the e-beam passing 
close to but outside of the BNNT)51, only HPhP modes are excited, 
resulting in distinct peaks in the STEM–EELS spectra (Supplementary 
Note 2 and Supplementary Fig. 5), while both HPhP and longitudinal 
optical (LO)-phonon signals are detected for bulk excitation (that is, 
with the e-beam traversing the BNNT). To understand the observed 
spectral features, we perform finite-element-method simulations of 
the STEM–EELS spectra (details in the Methods and Supplementary  
Fig. 6), which are in good agreement with the respective experimental 
spectra (Fig. 3a,b).

In the longitudinal scan of the e-beam (Fig. 3a), the observed 
resonant features (A, B and C peaks from lower to higher frequency) 
are HPhP modes under aloof excitation, similar to those in nano-
flakes51–53, but strongly modified by the geometry of the BNNT. As the 
e-beam is moved from the edge to the centre of the nanotube along 

the transverse direction, the frequencies of peaks A (~172 meV) and C 
(~193 meV) remain almost unchanged, while peak B (~172–193 meV) is 
monotonically redshifted. The intensities of peak B strongly depend 
on the e-beam position because the excited HPhPs propagate along 
the BNNT towards the ends, where they are reflected, thus producing 
a characteristic interference pattern. This behaviour clearly points to a 
spectrally evolving standing wave (that is, a longitudinal HPhP mode), 
similar to HPhP resonances in hBN rods54. Thus, peak B can be regarded 
as a longitudinal FP-cavity resonant mode. In addition, peak B merges 
with peak A as the e-beam moves to the middle of the nanotube, imply-
ing that peak A originates from the fundamental surface HPhP mode 
(SM0) in the BNNT. By contrast, the signal of peak C (Fig. 3a) stems 
from the highest-frequency feature before broadening due to the finite 
instrument resolution (Supplementary Fig. 6). Peak C exceeds the 
frequency limit of the longitudinal FP modes and is not affected by the 
BNNT length (Supplementary Fig. 7); therefore, it is a HWG-PhP mode.

The transverse scan of the e-beam, in the middle of the longi-
tudinal axial length of the BNNT, provides further insight into the 
HWG-PhP modes. In the aloof excitation region, the two observed peaks 
(D and E from lower to higher frequency in Fig. 3b) can be ascribed to 
the SM0 + FP and HWG-PhP modes. In the bulk excitation region, the 
SM0 + FP mode remains unchanged, while the high-frequency peak 
(HWG-PhP) shifts to blue as the e-beam moves into the inner region of 
the BNNT. As expected, the transverse scan renders symmetric results 
with respect to the nanotube axis. Such behaviour indicates a spectrally 
evolving standing wave pattern along the radial direction associated 
with the HWG-PhP modes of the BNNT.

According to the analysis presented above, narrow BNNTs are 
predicted to have HWG-PhP modes with reduced mode volume.  
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Fig. 2 | Direct observation of HWG-PhP modes. a, Schematic diagram of  
AFM-probe-based near-field characterization of a single BNNT. b, Measured 
nanoIR signals of hyperbolic polaritons obtained by AFM-IR at different spatial 
positions of a single BNNT. The inset AFM image illustrates the morphology of 
the BNNT, with the two additional insets showing zoomed-in views. The scale 
bar is 3 μm. c,d, Near-field two-dimensional distributions of the s-SNOM signal 
(normalized amplitude S3) at different frequencies: 1,480 cm−1 (c) and 1,530 cm−1 
(d). Cuts of the near-field intensity distributions along the diameter of the BNNT 
are superimposed as grey line profiles. The scale bars are 100 nm.
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Fig. 3 | EELS quantitative characterization of HWG-PhP modes. a,b, A series 
of EELS spectra obtained as the e-beam is scanned either along the axis of an 
individual BNNT (a; longitudinal scan in y from 0 (tube edge) to 500 nm (tube 
centre), with x = 42 nm in aloof configuration; the vertical black scale bar 
indicates 100 nm) or perpendicular to the axis (b; transverse scan in x from –54 
to 54 nm, with y = 500 nm; the scale bar indicates 20 nm). The BNNT has an outer 
radius R ≈ 36 nm and an inner radius r ≈ 13 nm. The pink-shaded areas highlight 
the HWG-PhP modes. Grey and blue dashed lines in the bottom panel of a are 
guides for the eye indicating the peak shifts of A and B, respectively. The SM0 
mode and FP mode are also marked. The upper panels show the e-beam (e–; 
downward blue arrows) and scanning (dashed black arrows) directions.
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In experiments, HWG-PhP modes are observed on BNNTs down to 14 
atomic layers (R ≈ 7 nm) and 6 atomic layers (R ≈ 4 nm; Fig. 4a,b). At 
this atomic scale, the intensities of HWG-PhP modes become gradually 
weaker as the sidewall thickness decreases. For a sidewall thickness 
below six atomic layers, the HWG-PhP mode is difficult to resolve in 
the EELS spectra.

As the electromagnetic energy of the HWG-PhP modes is mainly 
distributed inside the BNNT, its dispersion relation can be derived in 
analogy to volume-confined HPhP modes in hBN films, which follow 

the analytical expression30 q (ω) + ik (ω) = − 2ψ
d
arctan ( ε0

ψ            
) , where q 

and k are the real and imaginary parts of the HPhP wave vector; ω is the 
frequency; ε0 is the free-space permittivity; the ratio ψ = √ε∥/i√ε⊥  

involves the dielectric function of the BNNT along the tangential (ε∥) 
and radial (ε⊥) directions; and d is the sidewall thickness R – r. In the 
experiment, multiple sets of EELS spectra for BNNTs with sidewall 
thicknesses of 23 nm, 5 nm and 2 nm were measured and are presented 
in Fig. 3 and Supplementary Figs. 8 and 9. In particular, the wavelength 
of the HWG-PhP mode has a twofold difference when the e-beam hits 
the middle or the outer side of the BNNT (details in Supplementary  
Fig. 8). Therefore, the wavelength and resonance frequency of the 
HWG-PhP mode can be clearly extracted. The points corresponding to 

measured HWG-PhP modes in the frequency versus wave vector dia-
gram (diamonds in Fig. 4c) are extracted from the EELS data in Figs. 3 
and 4a,b. The simulated EELS spectra for a series of BNNTs with differ-
ent radii and sidewall thicknesses (Supplementary Figs. 10–12) are 
calculated and then plotted as circles in Fig. 4c.

Ultrasmall mode volume of HWG-PhP modes
According to the dispersion relation in Fig. 4c, HWG-PhP modes in 
BNNTs exhibit strong wavelength compression and enhanced optical 
fields, and in particular, the ultrasmall normalized mode volume Vm 
(refs. 18,19,55) can be calculated as Vm = λHWG-PhP

3/4π2     λ0
3    ( λHWG-PhP is the 

wavelength of HWG-PhP, details of the confined mode in Supplemen-
tary Fig. 13). Therefore, the HWG-PhP mode on the ~4-nm-radius BNNT 
can have an ultrasmall normalized mode volume on the order of ~10−10. 
Thanks to the atomic smoothness of BNNT nanocavities, the damping 
of the HWG-PhP modes is dominated by intrinsic propagation loss, as 
we show in Supplementary Note 3 and Supplementary Fig. 14. The 
actual loss rate γ of HWG-PhP modes is measured by nanoIR spectros-
copy (γ ≈ 7–8 cm−1) in Supplementary Fig. 14. The quality factor of 
HWG-PhPs (~220) can be derived from its definition Q = ωres/γ, where 
ωres is the resonance frequency. Remarkably, the damping rates remain 
unchanged for BNNTs with different radii and sidewall thicknesses, as 
losses in the HWG-PhP modes mainly originate from intrinsic inelastic 
transitions in the material. Therefore, the quality factors for BNNTs 
with radii of ~7 nm and 4 nm are well assessed in our experiment by 
averaging the measured quality factors (Q̄ ≈ 210) below 1,580 cm−1 in 
Supplementary Fig. 14. Based on these experimental values of Q and 
Vm, the Purcell factor Q/Vm of HWG-PhP modes can reach ~1012, reveal-
ing a high level of the local density of optical states (Fig. 4d; more details 
in Supplementary Notes 4 and 5). In addition, the existence of 
whispering-gallery modes in an artificial hyperbolic plasmonic meta-
material (with a repetition of Ag and dielectric layers) has been theo-
retically predicted56 and predicted to exhibit an extremely high local 
density of optical states reaching a value of ~106.

These extraordinary characteristics of HWG-PhPs are a 
consequence of both the intrinsic material properties and the 
one-dimensional nanocavity geometry. BNNTs constitute natural 
atomically smooth nanocavities with negligible scattering loss, as well 
as the hyperbolicity of their polaritons inherited from the base material, 
hBN. Because of these unique properties, HWG-PhP modes in BNNTs 
can overcome the trade-off between mode volume and quality factor. 
In addition, these characteristics are ideal to maintain an excellent 
level of quantum coherence, thus providing a promising platform for 
realizing single-photon sources for quantum information applications.

Conclusions
In conclusion, we directly observe HWG-PhP modes in BNNTs by 
both AFM-IR and STEM–EELS with quality factors up to ~220. These 
whispering-gallery modes are formed by confining phonon polari-
tons into atomically smooth cylindrical nanocavities (the BNNTs)—an 
effect that is made possible by the hyperbolicity and ensuing bound-
less wave vectors of phonon polaritons. Moreover, we demonstrate 
that HWG-PhP modes can be sustained on a ~4-nm-radius BNNT, which 
exhibits an ultrasmall volume Vm ≈ 10–10 and thus reveals an unprec-
edented level of the local density of optical states leading to an ultrahigh 
Purcell factor of Q/Vm ≈ 1012. Our study provides a new paradigm for 
nanophotonics based on one-dimensional-nanomaterial polaritons, 
revealing extraordinarily strong light–matter interaction capabili-
ties and holding great potential for long-sought-after applications in 
quantum nanophotonics.
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Methods
Sample preparation for the TEM experiments
Thick (radii ≈ 20–50 nm) and thin (radii ≈ 2–10 nm) BNNT samples were 
synthesized using a previously reported method57,58. The final BNNT 
products were then dispersed in pure ethanol using an ultrasonic oscil-
lator for 30 minutes for each product. Subsequently, three droplets 
of each solution were transferred onto 3 mm lacy carbon TEM grids. 
BNNTs were suspended on lacy carbon TEM grids. Before performing 
STEM measurements, the samples were annealed at 160 °C for 8 hours 
in a vacuum chamber to remove any possible hydroxide contamination.

AFM-IR experiment
NanoIR spectra were acquired using a commercial instrument 
(nanoIR3, Bruker Nano) that consisted of an AFM microscope operat-
ing in contact mode and a tunable pulsed laser source40,42. The pulsed 
laser repetition rate and cantilever decay signal were optimized at 
second contact oscillation frequency (~360 kHz) of the AFM tip. After 
optimizing the laser signal, nanoIR spectra were collected from 780 
to 1,900 cm−1 at ~3 cm−1 intervals. The spatial resolution depended on 
the radius of curvature of the AFM tip, which was around 20 nm in our 
experiments.

The s-SNOM experiment
Near-field imaging was performed using a commercially available 
s-SNOM set-up (Neaspec) equipped with different infrared lasers.  
A metalized cantilever atomic force microscope tip served as a scat-
tering near-field probe. The tip oscillated vertically at the mechanical 
resonance frequency of the cantilever (approximately 270 kHz) with an 
amplitude of approximately 50 nm. The tip was illuminated with mono-
chromatic p-polarized infrared light from a quantum cascade laser. 
Using this technique, the tip-launched polaritons were reflected at 
the edges and produced polariton interference, as shown in Fig. 2c,d.

EELS and TEM imaging experiments
We carried out EELS experiments on a Nion U-HERMES200 TEM instru-
ment equipped with a monochromator that was operated at 60 kV to 
avoid damage to BN materials. We employed a convergence semi-angle 
α = 20 mrad and a collection semi-angle β = 25 mrad for all datasets. In 
this setting, the spatial resolution was ~0.2 nm, while the energy resolu-
tion was ~7.5 meV, suitable for the characterization of BNNTs. Moreover, 
the e-beam current used for EELS was ~10 pA, while the acquisition 
times were 200 ms per pixel and 500 ms per pixel for the separately 
measured datasets along directions parallel and perpendicular to the 
axis of the BNNTs. The zero-loss peak was slightly saturated to improve 
the signal-to-noise ratio of the spectra. The high-resolution TEM images 
in Fig. 1a and Supplementary Fig. 1 were obtained using an FEI Tecnai 
F20 TEM instrument operated at 200 kV.

EELS data processing
All the acquired vibrational spectra were processed using a 
custom-written MATLAB code and the Gatan Microscopy Suite. More 
specifically, the EELS spectra were first aligned by their normalized 
cross-correlation and then normalized to the intensity of the zero-loss 
peak. Subsequently, the block-matching and three-dimensional filter-
ing (BM3D) algorithms were applied to remove Gaussian noise. The 
background arising from the tail of the zero-loss peak was fitted to a 
modified Peason-VII function with two fitting windows and then sub-
tracted to obtain a cleaner vibrational signal. The Lucy–Richardson 
algorithm was subsequently employed to reduce the broadening effect 
induced by the finite energy resolution of the instrument, taking the 
elastic zero-loss peak as the reference point for the spread function. 
The so-processed spectra were summed along the direction parallel to 
the interface for obtaining line-scan data with a good signal-to-noise 
ratio. In addition, we employed a multi-Gaussian peak fitting method 
to extract the polariton peaks from the composed signal.

Theoretical calculations
The finite-element method implemented in Comsol Multiphysics is 
used to simulate the EELS spectra. Specifically, we numerically solve 
Maxwell’s equations to evaluate the electric field E(r,t) produced by 
a moving electron in the presence of a BNNT, which is described by 
means of the dielectric function detailed in Supplementary Fig. 2 and 
Supplementary Note 1. By following a well-established procedure59, 
a current source is used to represent the e-beam along the direction 
perpendicular to the sample60,61:

j (r,ω) = −e ̂zδ (x − x0)δ (y − y0) exp (iωz/v) , (1)

where the electron is treated as a point charge –e moving with  
constant velocity v along z and hitting the sample at the position  
r0 = (x0, y0, 0) at time t = 0. We work in angular-frequency space ω and 
aim at obtaining the probability for the electron to lose an amount 
of energy ħω. The fast electron supplies an external evanescent field 
E0(r,t) as it moves in vacuum, while the interaction with the sample 
induces a field Eind(r,t) = E(r,t) – E0(r,t). Although E0(r,t) is analytical, 
we calculate both E(r,t) and E0(r,t) numerically, preserving the same 
mesh to increase the accuracy in the subtraction. The EELS probability 
is then obtained from the induced field as48

We apply equation (2) to electrons passing near or through a 
BNNT and obtain the results presented in Supplementary Fig. 6. For 
a quantitative comparison with experiment, we incorporate the spec-
tral resolution determined by the measured zero-loss peak (ZLP), 
so that we convolute the calculated spectra in Supplementary Fig. 6  
with a Gaussian function (Supplementary Note 1 for details)  
according to

Γ
broadened
EELS (ω) = ∫dω′

ΓEELS (ω − ω′)ZLP (ω′) . (3)

The so-broadened calculated probability, plotted in Supplemen-
tary Fig. 6, is in excellent agreement with the experiment.
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