

1 **Few-layer hexagonal boron nitride as a shield of brittle materials for cryogenic s-SNOM**
2 **exploration of phonon polaritons**

3 Debo Hu,¹ Cheng Luo,¹ Lixing Kang,² Mengkun Liu,³ Qing Dai^{1,a)}

4 ¹CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of
5 Standardization and Measurement for Nanotechnology, CAS Center for Excellence in
6 Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

7 ²Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou, 215123, China

8 ³Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA

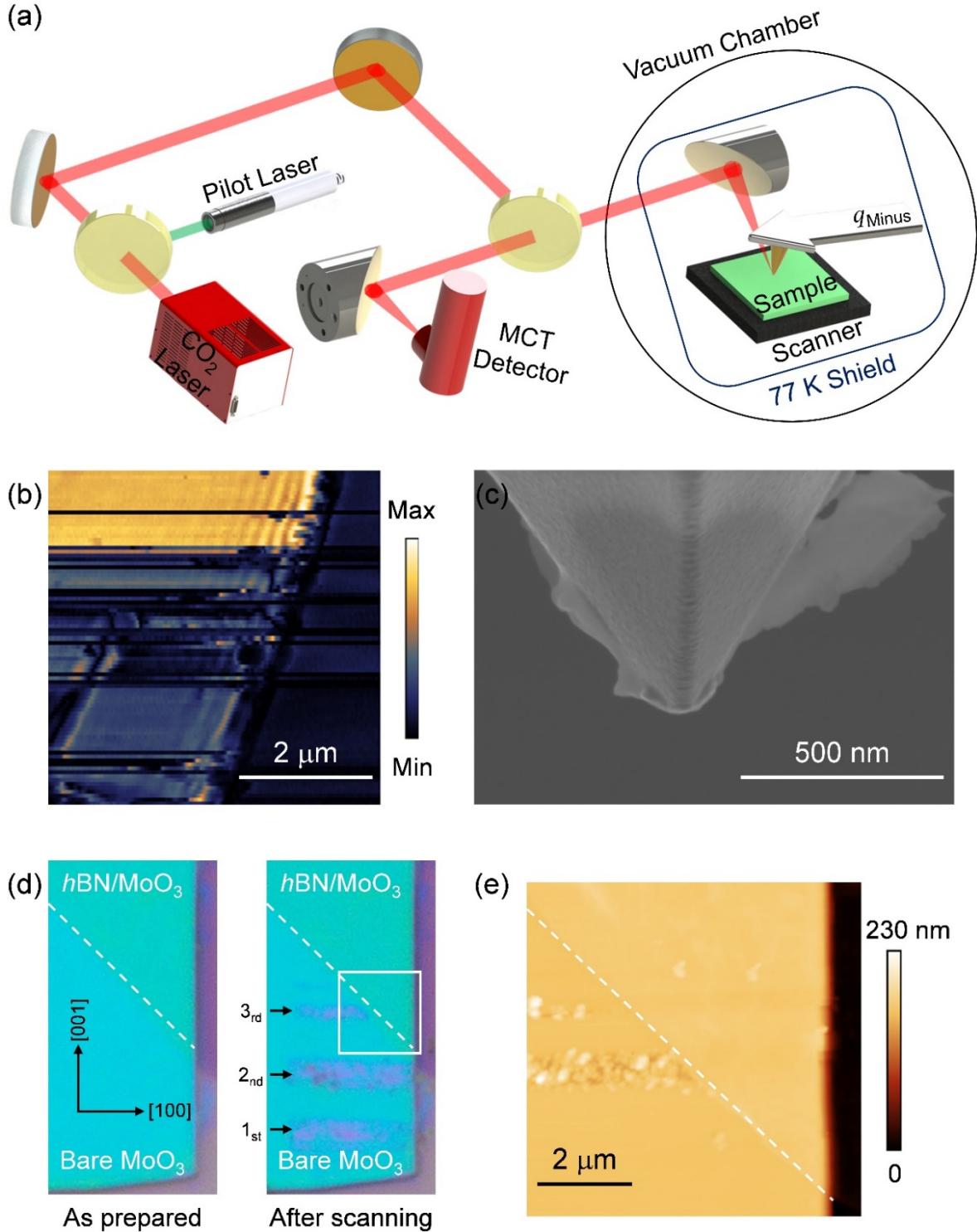
9 ^{a)}Authors to whom correspondence should be addressed: daiq@nanoctr.cn

10 **Abstract**

12 Surface phonon polaritons (SPhPs) in van der Waals (vdW) materials are of great interest in
13 fundamental and applied research fields. Probing the characteristics of vdW SPhPs at cryogenic
14 temperatures is an essential task for their implementation in low-temperature physics. However,
15 the most commonly used characterization technique of vdW SPhPs under ambient conditions –
16 scattering-type scanning near-field optical microscopy (s-SNOM) operating in tapping mode
17 (intermittent-contact mode) – can prove especially problematic at low temperatures because the
18 sample under test may become brittle and fragile. Therefore, high fracture toughness is desired
19 for the samples under intermittent-contact s-SNOM scanning at low temperatures. In this work,
20 by taking α -phase molybdenum trioxide (α -MoO₃) as a representative, we first confirm the
21 surface deterioration induced by tip-sample interactions at low temperatures as a primary
22 obstacle hindering the cryogenic nano-imaging of vdW SPhPs using a tapping mode s-SNOM.
23 Then, we propose to use few-layer hexagonal boron nitride (*h*BN) as a mechanically tough yet
24 optically passive cladding layer to enhance the surface stability of α -MoO₃. Finally, we
25 demonstrate the validity of our surface reinforcement strategy by probing the previously
26 unexplored temperature dependence of SPhPs within the third Reststrahlen band (RB₃) of α -
27 MoO₃. Our method allows a sustained operation of tapping mode s-SNOM at cryogenic
28 temperatures with negligible effect on the intrinsic properties of SPhPs.

29

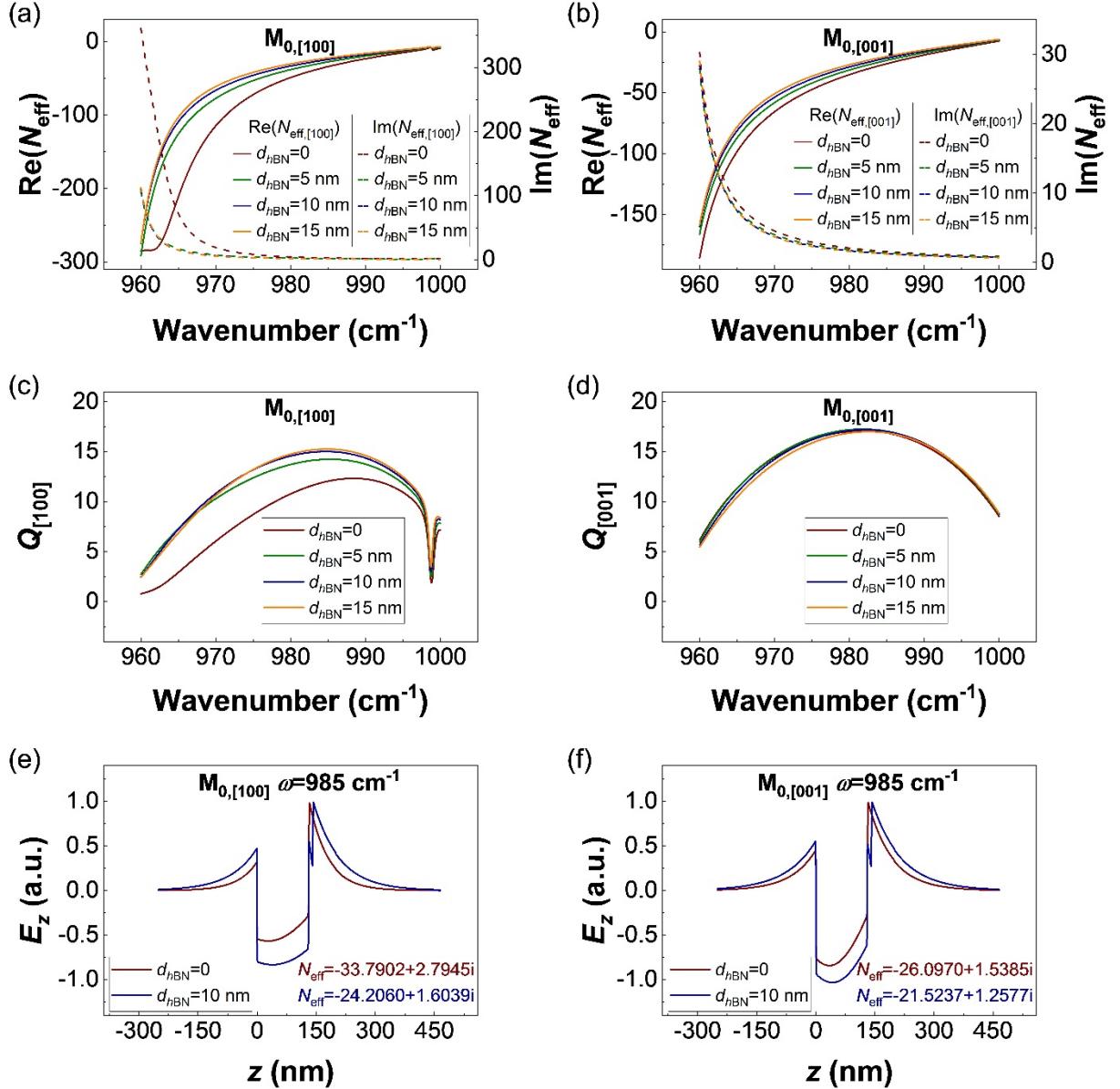
Owning to the development of advanced characterization techniques like scattering-type scanning near-field optical microscopy (s-SNOM)¹⁻⁶ and the emergence of low-dimensional materials like van der Waals (vdW) crystals,⁷⁻¹² recent years have witnessed a renaissance of the research on surface phonon polaritons (SPhPs).¹³⁻¹⁶ The hybrid photon-phonon nature of SPhPs¹⁷ together with the intrinsic low-dimensional character of vdW materials¹⁸⁻²⁰ make the associated electromagnetic energy extremely confined in space,^{21,22} and therefore vdW SPhPs is a topic of intense current interest in both fundamental and technical research fields related to strong light-matter interactions.^{23,24} Promising applications of vdW SPhPs include assisting the multiphoton spontaneous emission,²⁵ mediating the near-field and ballistic heat transfer,²⁶⁻²⁸ enhancing the dynamical vacuum effects,²⁹ and improving the sensitivity of vibrational spectroscopy^{30,31}. Many of which involve cryogenic operating conditions.^{28,32,33} However, although cryogenic s-SNOM (cryo-SNOM) has been commercially available for several years^{34,35} and graphene plasmon polaritons have been routinely probed by a couple of homebuilt cryo-SNOM systems,³⁶⁻⁴¹ reports on the near-field characterization of vdW SPhPs at cryogenic temperatures are rare so far.⁴² This stems from specific difficulties in performing cryogenic nano-imaging of vdW SPhPs.


In this work, by taking the biaxial α -phase molybdenum trioxide (α -MoO₃) as a representative, we first identify the surface deterioration of the microcrystal under investigation induced by tip-sample interactions at low temperatures as the main obstacle hindering the cryogenic nano-imaging of vdW SPhPs using a tapping mode s-SNOM. Then, we propose to use few-layer hexagonal boron nitride (*h*BN) as a mechanically tough yet optically passive cladding layer to enhance the surface stability of α -MoO₃. Finally, we demonstrate the validity of our surface reinforcement strategy by probing the previously unexplored temperature dependence of SPhPs in the third Reststrahlen band (RB₃) of α -MoO₃.

s-SNOM operating in tapping mode (intermittent-contact mode) is not always non-invasive,^{43,44} because there exists a time-varying (frequency $f \sim 270$ kHz) interaction force up to tens of nN (free amplitude $A \sim 100$ nm, 80% setpoint, cantilever force constant $k \sim 42$ N/m, quality factor of tip ~ 1000) between the vibrating tip and the sample surface,⁴⁵⁻⁴⁷ which is equivalent to a high-rate stress on the order of GPa⁴⁸ as a result of the tiny contact area and can potentially damage the surfaces of specific samples. This is especially the case at cryogenic temperatures, since many materials undergo ductile-brittle transition when cooled down⁴⁹⁻⁵² and become more sensitive to the high-rate impact of the tip apex as a result of the deteriorated fracture toughness.^{53,54} Considering a previous first principle calculation has suggested the surface stability of α -MoO₃ is temperature dependent,⁵⁵ we chose α -MoO₃ as a model material for the

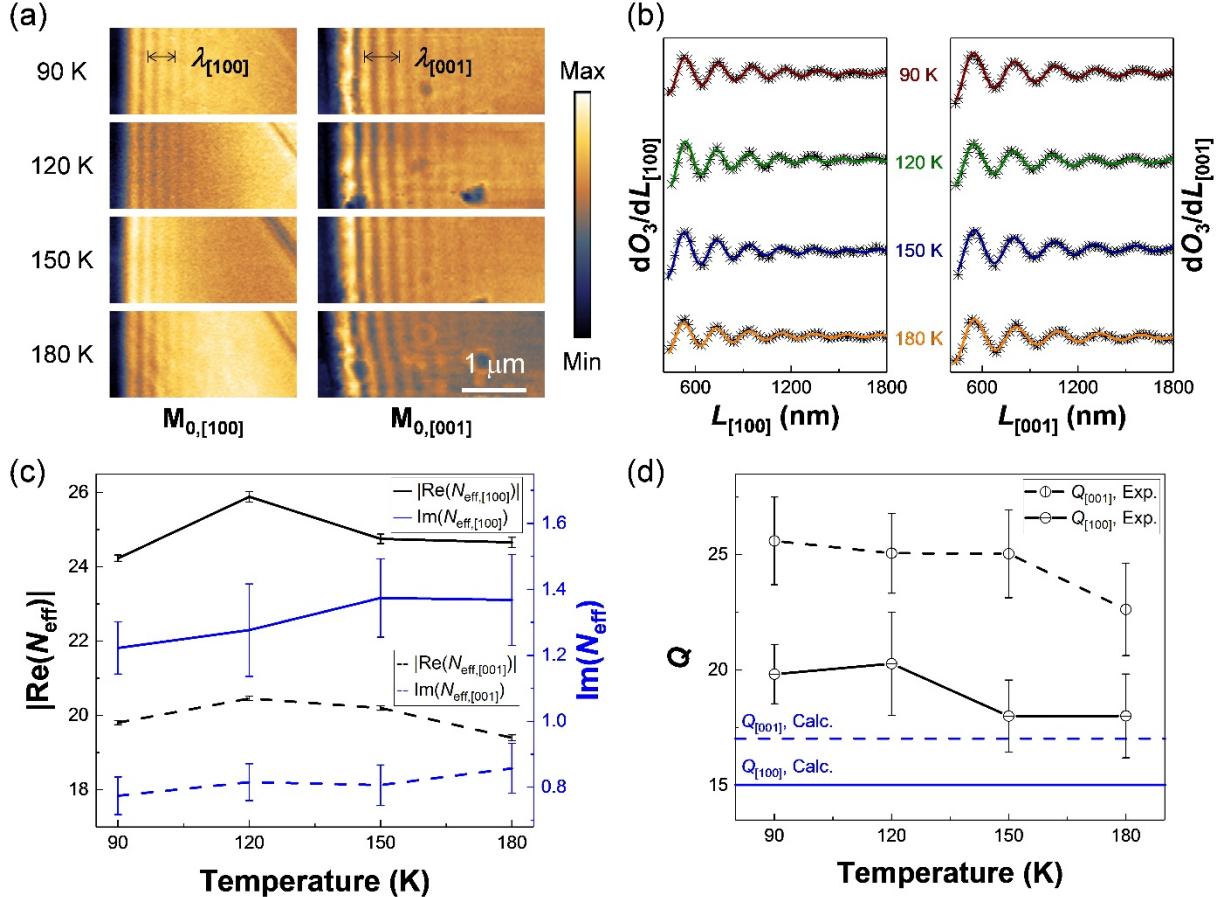
1 experimental study of tip-induced surface deterioration at low temperatures and the
2 corresponding protection strategy. Our imaging results obtained by a homebuilt cryo-SNOM
3 system schematically illustrated in Figure 1(a) (see Figure S1 of the Supplementary Material
4 for details inside the vacuum chamber) indeed indicate a reduced surface stability of α -MoO₃
5 at low temperature (Note that in all the experiments we used ArrowTM NCPt probes with their
6 cantilevers micro-engineered. These processed probes exhibit comparable quality factors under
7 vacuum-cryogenic conditions to those in ambient environment thus are nicknamed q_{Minus}). A
8 typical near-field optical image of bare α -MoO₃ microcrystals mechanically exfoliated onto
9 SiO₂/Si substrates at 88 K is shown in Figure 1(b), which indicates the rapid surface
10 deterioration of α -MoO₃ during cryo-SNOM scanning makes the imaging of SPhPs extremely
11 difficult (Such a problem has not been encountered under vacuum and room-temperature
12 imaging conditions). To find out what happened in the scanning process, we took a close look
13 at the tip apex used in the experiment with the scanning electron microscope (SEM), and the
14 image shown in Figure 1(c) indicates there is some flaky debris attaching to the tip apex.
15 Therefore, we conjecture that a probable scenario for the imaging process of Figure 1(b) is: first,
16 the surface of α -MoO₃ became less stable as a result of low-temperature embrittlement and
17 fractured under the repeated impact of SNOM tip; then, some fragments of the broken surface
18 adhered to the tip apex; finally, the deteriorated sample surface together with the contaminated
19 tip-apex cause a significant decay of the near-field signal.

20 To solve the problem of surface deterioration and tip contamination in the cryo-SNOM
21 imaging, one has to resort to an appropriate cladding material that, on the one hand, can improve
22 the mechanical toughness of the sample, and, on the other hand, would not disturb the optical
23 imaging. Considering *h*BN exhibits a high fracture toughness thus is expected to be resistant to
24 the impact of the tapping tip⁵⁶ and its Reststrahlen bands are well-separated from those of α -
25 MoO₃ (in the frequency range from 850 to 1200 cm⁻¹, the real parts of the in-plane and the out-
26 of-plane dielectric constants of *h*BN are positive while the imaginary parts are relatively small
27 as shown in Figure S2 of the Supplementary Material),^{57,58} we chose it to verify the validity of
28 our surface reinforcement strategy. As shown in Figure 1(d), we fabricated a α -MoO₃ sample
29 partly cladded with a 5-nm-thick *h*BN flake using the standard dry transfer method⁵⁹ and put it
30 into the trial of cryo-SNOM scanning at 88 K. Three rounds of scanning (along the [100]
31 direction and cross the sample edge) have been conducted with the first two on the bare α -
32 MoO₃ surface and the last one on the partly cladded sample surface. Without exception, all bare
33 α -MoO₃ surface areas have been modified considerably by scanning, as seen from the
34 comparison between the as-prepared and post-scanning sample optical micrographs. Only the


1 *hBN* cladded site remained completely intact after scanning. Figure 1(e) shows the atomic force
 2 microscope (AFM) image corresponding to the third round scanning, the direct contrast
 3 between the broken bare $\alpha\text{-MoO}_3$ surface and the intact *hBN*-protected surface is strong
 4 evidence for the effectiveness of our surface reinforcement method.

5 FIG. 1. (a) Schematics of the homebuilt cryo-SNOM system used in this work. (b) Near-field
 6 optical image indicating surface deterioration of bare $\alpha\text{-MoO}_3$ induced by tip-sample
 7 interaction at 88 K. (c) SEM image of the SNOM tip apex used in (b). (d) Optical images of a

1 α -MoO₃ microcrystal partly cladded with a 5-nm-thick *h*BN flake before and after SNOM
2 imaging at 88 K, the white dash lines indicate the *h*BN boundary, the black arrows in the right
3 panel indicate the scanning area in each round of the experiment, and the box marks the imaging
4 area in (e). (e) AFM image of the partly cladded α -MoO₃ sample marked in (d) with the box.
5


6 To evaluate the optical consequences of *h*BN cladding, using transfer-matrix method⁶⁰ and
7 infrared dielectric parameters from references,^{57,58,61} we calculated and compared the phonon-
8 polariton behaviors of a SiO₂/130-nm-thick α -MoO₃/vacuum structure and a SiO₂/130-nm-
9 thick α -MoO₃/*h*BN/vacuum model system within the RB₃ (960-1000 cm⁻¹) of α -MoO₃ with
10 varying *h*BN thickness. Figure 2(a) and (b) show the dispersions of the fundamental phonon-
11 polariton modes of α -MoO₃ propagating along the [100] (M_{0,[100]}) and [001] (M_{0,[001]})
12 crystalline directions, respectively. It can be seen that both M_{0,[100]} and M_{0,[001]} are type I
13 hyperbolic phonon-polariton modes with negative phase velocity (negative real part of the
14 effective indices of refraction N_{eff}) as a result of the negative out-of-plane dielectric constant of
15 α -MoO₃ within RB₃,^{8,58} and suffer high propagation losses below the frequency 970 cm⁻¹ (large
16 imaginary part of N_{eff}) resulting from the heavy damping of the nearby α -MoO₃ transverse
17 optical phonon at 956.7 cm⁻¹.⁵⁸ Adding the *h*BN layer and increasing its thickness would
18 generally compromise the field confinement factor (absolute value of the real part of N_{eff}) while
19 lowering the propagation loss at the same time (decreasing imaginary part of N_{eff}). Specifically,
20 in the case of M_{0,[100]} the decrease of the propagation loss is more significant than that of the
21 field confinement factor after *h*BN cladding, resulting in a net increase of the mode quality
22 factor ($Q=|\text{Re}(N_{\text{eff}})/\text{Im}(N_{\text{eff}})|$) as shown in Figure 2(c) (the sharp dips are due to the transverse
23 optical phonon of α -MoO₃ at 998.7 cm⁻¹); in the case of M_{0,[001]} the decreases of the real and
24 imaginary parts of N_{eff} are almost proportional, leading to a Q factor nearly independent of the
25 *h*BN cladding as shown in Figure 2(d). Since the Q factors of both M_{0,[100]} and M_{0,[001]} have
26 their maximum values in the frequency range from 980 cm⁻¹ to 990 cm⁻¹, 985 cm⁻¹ would be a
27 preferred frequency in the following cryo-SNOM imaging experiments. To further assess the
28 effect of *h*BN cladding on the excitation and detection of SPhPs at this selected frequency, we
29 calculated the mode profiles (E_z components, with and without a 10-nm-thick *h*BN cladding
30 layer) of M_{0,[100]} and M_{0,[001]}, respectively, as shown in Figure 2(e) and (f). Considering the *h*BN
31 cladding layer only slightly modifies the mode profiles and the near-field imaging-related E_z
32 components still extend well above the sample surface, our surface reinforcement method of
33 *h*BN cladding would not impede the cryo-SNOM imaging of α -MoO₃ SPhPs.

1 FIG. 2. (a) and (b) Calculated effective indices of refraction (N_{eff}) for the fundamental phonon-
2 polariton modes in the SiO₂/α-MoO₃/hBN/vacuum structure with a fixed α-MoO₃ thickness of
3 130 nm and varying hBN thickness, propagating along the [100] ($M_{0,[100]}$) and [001] ($M_{0,[001]}$)
4 crystalline directions of α-MoO₃ respectively. (c) and (d) Q factors of $M_{0,[100]}$ and $M_{0,[001]}$,
5 respectively. (e) and (f) Electric field profiles of $M_{0,[100]}$ and $M_{0,[001]}$ at 985 cm⁻¹ with/without a
6 10-nm-thick hBN cladding layer, respectively.

7
8 Next, we proceeded to the experimental verification of the performance of hBN cladding
9 in the cryo-SNOM imaging of SPhPs. To this end, we fabricated a sample on SiO₂/Si substrate
10 by cladding a 130-nm-thick α-MoO₃ microcrystal with a 10-nm-thick hBN flake. Thanks to the
11 well-defined and mutually-orthogonal boundaries of this α-MoO₃ crystal, we can probe its
12 $M_{0,[100]}$ and $M_{0,[001]}$ modes simultaneously. In the imaging of $M_{0,[100]}$ ($M_{0,[001]}$) mode at 985 cm⁻

¹ we scanned the sample along the [100] ([001]) direction and demodulated the near-field signal
2 at the third-order harmonic of the tip-tapping frequency using a lock-in (O_3 , lower-order signals
3 recorded simultaneously usually exhibit inferior signal-to-noise ratio as shown in Figure S3 of
4 the Supplementary Material). As shown in Figure 3(a), the sample surface survived the long-
5 time high-rate impact of the SNOM tip and remained intact under the four different test
6 temperatures. Interference fringes of both $M_{0,[100]}$ and $M_{0,[001]}$ caused by the vectorial
7 superposition of the tip-launched and the edge-reflected SPhPs can be easily distinguished in
8 all near-field optical images (O_3) at different temperatures. To enhance the visibility of the
9 interference fringes in Figure 3(a) so as to facilitate the extraction of the propagation properties
10 of both $M_{0,[100]}$ and $M_{0,[001]}$ at varying temperatures, we differentiated the images in Figure 3(a)
11 along the [100] ($dO_3/dL_{[100]}$) and [001] ($dO_3/dL_{[001]}$) directions respectively and left the nearest
12 fringes to the sample edges out before fitting the processed data with a damped sinusoidal
13 waveform. Because the damped sinusoidal waveform and its derivative exhibit the same
14 damping factor and spatial frequency, the differentiation process would not negatively influence
15 the accuracy of data fitting.⁶² We can see in Figure 3(b) that the processed experimental data fit
16 very well with the damped sinusoidal waveform, and the extracted parameters from fitting for
17 both $M_{0,[100]}$ and $M_{0,[001]}$ are illustrated in Figure 3(c) and (d). As predicted by the theoretical
18 calculations in Figure 2, the $M_{0,[100]}$ mode indeed exhibits a more significant field confinement
19 factor than that of $M_{0,[001]}$ while the $M_{0,[001]}$ mode holds a relatively higher Q factor, revealing
20 the intrinsic in-plane optical anisotropy of α -MoO₃ across the entire temperature window
21 explored. Thus far, the validity of our proposed surface reinforce method has been
22 experimentally demonstrated, at least for α -MoO₃ on the most commonly used SiO₂/Si
23 substrate. However, although the Q -temperature curves in Figure 3(d) (see Figure S4 of the
24 Supplementary Material for results of a thicker sample) follow a similar trend with that of the
25 type II hyperbolic phonon polaritons in bare α -MoO₃,⁴² and the observed low-temperature Q
26 factors are indeed larger than the theoretically predicted room-temperature ones, the wave-
27 guiding properties of the type I hyperbolic phonon polaritons in *h*BN cladded α -MoO₃ do show
28 slight non-monotonic temperature dependence within the investigated temperature range in our
29 cryo-SNOM experiments. This non-monotonicity might originate from the non-trivial strain
30 imposed by the *h*BN cladding layer,⁶³ as evidenced by the different temperature dependence of
31 the Raman spectrum of bare and cladded α -MoO₃ shown in Figure S5 of the Supplementary
32 Material.

1 FIG. 3. (a) s-SNOM images of a 10-nm-thick $h\text{BN}$ cladded 130-nm-thick $\alpha\text{-MoO}_3$ microcrystal
2 at cryogenic temperatures, along its [100] and [001] crystalline directions respectively. (b)
3 Fitting the experimental data with a damped sinusoidal waveform. (c) Fitted effective indices
4 of refraction (N_{eff}) at different temperatures. (d) Fitted Q factors at different temperatures, dash
5 and solid horizontal lines indicate theoretically predicted room-temperature Q values for [001]
6 and [100] directions respectively. Bars in (c) and (d) denote standard deviations.

7
8 To this day, cryo-SNOM remains one of a few diffraction-unlimited techniques which can
9 probe the nanoscale electrodynamics of vdW crystals or other quantum materials at low
10 temperatures.⁶⁴⁻⁶⁷ Surface deterioration of samples under cryo-SNOM test induced by tip-
11 sample interactions is an aspect not appreciated before. We first raise awareness of this problem,
12 propose and verify an effective way of bypassing this obstacle in this work via $h\text{BN}$ cladding.
13 Using this method, we reveal the temperature dependence of the waveguiding properties of the
14 type I hyperbolic phonon polaritons within RB_3 of $\alpha\text{-MoO}_3$. Our method allows a sustained
15 operation of tapping mode s-SNOM at cryogenic temperatures with negligible effect on the
16 intrinsic properties of the sample, thus can be adopted as a standard method and used in the
17 imaging of other polaritons like surface exciton polaritons⁶⁸⁻⁷⁰, Cooper pair polaritons⁷¹, and

1 surface magnon polaritons⁷²⁻⁷⁴ at low temperatures. Besides, the s-SNOM imaging of brittle
2 materials at ambient temperature can also benefit from this method.

3 **Supplementary Material**

4 A description of the cryo-SNOM assembly inside the vacuum chamber, an explanation
5 about the applicable frequency range of the *h*BN protection layer, a comparison between the
6 second- and third-harmonic demodulated images, the experimental results of a thicker α -MoO₃
7 sample, and the low-temperature Raman measurements results are included.

8 Q.D. acknowledges the support from the National Natural Science Foundation of China
9 (Grant No. 51925203). D.H. acknowledges the support from the National Natural Science
10 Foundation of China (Grant No. 52072083) and the Youth Innovation Promotion Association,
11 CAS. Building of the cryo-SNOM used in this work is supported by the CAS Scientific
12 Equipment Development Project. D.H. acknowledges Prof. S.P. Sun for the communications
13 about MoO₃ surface stability, Prof. M.X. Liu and Prof. G.J. Zhang for the discussions on tip-
14 sample interactions, and Dr. S.C. Sun for the help in low-temperature Raman measurements.

15 **DATA AVAILABILITY**

16 The data that support the findings of this study are available from the corresponding
17 author upon reasonable request.

18

19 **REFERENCES**

20 ¹F. Keilmann, J. Microsc. **194**, 567 (1999).

21 ²A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, Appl. Phys. Lett. **87**, 81103 (2005).

22 ³A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, Appl. Phys. Lett. **92**, 203104 (2008).

23 ⁴A. J. Huber, N. Ocelic and R. Hillenbrand, J. Microsc. **229**, 389 (2008).

24 ⁵X. Chen, D. Hu, R. Mescall, G. You, D. N. Basov, Q. Dai, and M. Liu, Adv. Mater. **31**, 1804774 (2019).

25 ⁶W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A. Alù, C. Qiu, and P. Li, Nature **596**, 362
26 (2021).

27 ⁷S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K.

28 Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-
29 Herrero, M. M. Fogler, and D. N. Basov, Science **343**, 1125 (2014).

30 ⁸E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso,
31 F. H. L. Koppens, and R. Hillenbrand, Nat. Photonics **9**, 674 (2015).

32 ⁹P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and
33 R. Hillenbrand, Science **359**, 892 (2018).

1 ¹⁰W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I.
2 Amenabar, P. Li, S. Vélez, C. Tollar, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. Lee, R. Hillenbrand,
3 and Q. Bao, *Nature* **562**, 557 (2018).

4 ¹¹Z. Zheng, N. Xu, S. L. Oscurato, M. Tamagnone, F. Sun, Y. Jiang, Y. Ke, J. Chen, W. Huang, W. L. Wilson,
5 A. Ambrosio, S. Deng, and H. Chen, *Sci. Adv.* **5**, v8690 (2019).

6 ¹²J. Taboada-Gutiérrez, G. Álvarez-Pérez, J. Duan, W. Ma, K. Crowley, I. Prieto, A. Bylinkin, M. Autore, H.
7 Volkova, K. Kimura, T. Kimura, M. H. Berger, S. Li, Q. Bao, X. P. A. Gao, I. Errea, A. Y. Nikitin, R.
8 Hillenbrand, J. Martín-Sánchez, and P. Alonso-González, *Nat. Mater.* **19**, 964 (2020).

9 ¹³J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki,
10 *Nanophotonics* **4**, 44 (2015).

11 ¹⁴D. N. Basov, M. M. Fogler and F. J. García De Abajo, *Science* **354**, g1992 (2016).

12 ¹⁵T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-
13 Moreno, and F. Koppens, *Nat. Mater.* **16**, 182 (2017).

14 ¹⁶J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, and D. N. Basov, *Nat. Rev. Mater.* **4**, 552
15 (2019).

16 ¹⁷D. N. Basov, A. Asenjo-Garcia, P. J. Schuck, X. Zhu, and A. Rubio, *Nanophotonics* **10**, 549 (2021).

17 ¹⁸K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, *Proc.
18 Natl Acad. Sci. USA* **102**, 10451 (2005).

19 ¹⁹A. K. Geim and I. V. Grigorieva, *Nature* **499**, 419 (2013).

20 ²⁰K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, *Science* **353**, 461 (2016).

21 ²¹S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain,
22 P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, *Adv. Mater.* **31**, 1806603
23 (2019).

24 ²²N. Li, X. Guo, X. Yang, R. Qi, T. Qiao, Y. Li, R. Shi, Y. Li, K. Liu, Z. Xu, L. Liu, F. J. García De Abajo, Q.
25 Dai, E. Wang, and P. Gao, *Nat. Mater.* **20**, 43 (2021).

26 ²³N. Rivera, T. Christensen and P. Narang, *Nano Lett.* **19**, 2653 (2019).

27 ²⁴N. Rivera and I. Kaminer, *Nat. Rev. Phys.* **2**, 538 (2020).

28 ²⁵N. Rivera, G. Rosolen, J. D. Joannopoulos, I. Kaminer, and M. Soljačić, *Proc. Natl Acad. Sci. USA* (2017).

29 ²⁶B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, *AIP Adv.* **5**, 53503 (2015).

30 ²⁷B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, *Phys. Rev. B* **95**, 245437 (2017).

31 ²⁸S. Huberman, R. A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A. A. Maznev, G. Chen, and K. A.

1 Nelson, Science **364**, 375 (2019).

2 ²⁹J. Sloan, N. Rivera, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. Lett. **127**, 53603 (2021).

3 ³⁰M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-

4 González, J. Aizpurua, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, Light. Sci. Appl. **7**, 17172 (2018).

5 ³¹A. Bylinkin, M. Schnell, M. Autore, F. Calavalle, P. Li, J. Taboada-Gutiérrez, S. Liu, J. H. Edgar, F. Casanova,

6 L. E. Hueso, P. Alonso-Gonzalez, A. Y. Nikitin, and R. Hillenbrand, Nat. Photonics **15**, 197 (2020).

7 ³²G. Plunien, R. Schützhold and G. Soff, Phys. Rev. Lett. **84**, 1882 (2000).

8 ³³C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing,

9 Nature **479**, 376 (2011).

10 ³⁴T. Gokus, A. Huber and M. Eisele, presented at the 2018 Conference on Lasers and Electro-Optics (CLEO),

11 San Jose, California United States, 2018.

12 ³⁵W. Luo, M. Boselli, J. Poumirol, I. Ardizzone, J. Teyssier, D. van der Marel, S. Gariglio, J. Triscone, and A. B.

13 Kuzmenko, Nat. Commun. **10**, 2774 (2019).

14 ³⁶H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, Rev. Sci. Instrum. **84**, 23701 (2013).

15 ³⁷G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S. S. Sunku, B. Y. Jiang, J. Hone, C. R. Dean,

16 M. M. Fogler, and D. N. Basov, Nature **557**, 530 (2018).

17 ³⁸D. J. Rizzo, B. S. Jessen, Z. Sun, F. L. Ruta, J. Zhang, J. Yan, L. Xian, A. S. McLeod, M. E. Berkowitz, K.

18 Watanabe, T. Taniguchi, S. E. Nagler, D. G. Mandrus, A. Rubio, M. M. Fogler, A. J. Millis, J. C. Hone, C. R.

19 Dean, and D. N. Basov, Nano Lett. **20**, 8438 (2020).

20 ³⁹W. Zhao, H. Li, X. Xiao, Y. Jiang, K. Watanabe, T. Taniguchi, A. Zettl, and F. Wang, Nano Lett. **21**, 3106

21 (2021).

22 ⁴⁰Y. Dong, L. Xiong, I. Y. Phinney, Z. Sun, R. Jing, A. S. McLeod, S. Zhang, S. Liu, F. L. Ruta, H. Gao, Z.

23 Dong, R. Pan, J. H. Edgar, P. Jarillo-Herrero, L. S. Levitov, A. J. Millis, M. M. Fogler, D. A. Bandurin, and

24 D. N. Basov, Nature **594**, 513 (2021).

25 ⁴¹W. Zhao, S. Zhao, H. Li, S. Wang, S. Wang, M. I. B. Utama, S. Kahn, Y. Jiang, X. Xiao, S. Yoo, K. Watanabe,

26 T. Taniguchi, A. Zettl, and F. Wang, Nature **594**, 517 (2021).

27 ⁴²G. Ni, A. S. McLeod, Z. Sun, J. R. Matson, C. F. B. Lo, D. A. Rhodes, F. L. Ruta, S. L. Moore, R. A. Vitalone,

28 R. Cusco, L. Artus, L. Xiong, C. R. Dean, J. C. Hone, A. J. Millis, M. M. Fogler, J. H. Edgar, J. D. Caldwell,

29 and D. N. Basov, Nano Lett. **21**, 5767 (2021).

30 ⁴³M. Yu, T. Kowalewski and R. S. Ruoff, Phys. Rev. Lett. **85**, 1456 (2000).

31 ⁴⁴K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, and Y. Jiang, Nat. Rev. Methods Primers **1**, 36

1 (2021).

2 ⁴⁵R. García and A. San Paulo, Phys. Rev. B **60**, 4961 (1999).

3 ⁴⁶S. C. Fain, K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie, Appl. Phys. Lett. **76**, 930 (2000).

4 ⁴⁷S. Hu and A. Raman, Appl. Phys. Lett. **91**, 123106 (2007).

5 ⁴⁸O. P. Behrend, F. Oulevey, D. Gourdon, E. Dupas, A. J. Kulik, G. Gremaud, and N. A. Burnham, Appl. Phys.

6 A **66**, S219 (1998).

7 ⁴⁹A. W. Magnusson and W. M. Baldwin, J. Mech. Phys. Solids **5**, 172 (1957).

8 ⁵⁰D. A. Wigley, *Mechanical Properties of Materials at Low Temperatures*. (Springer, Boston, 1971).

9 ⁵¹A. Lupinacci, J. Kacher, A. A. Shapiro, P. Hosemann, and A. M. Minor, J. Mater. Res. **36**, 1751 (2021).

10 ⁵²H. Kim and S. Roberts, J. Am. Ceram. Soc. **77**, 3099 (1994).

11 ⁵³K. S. Chan, Metall. Mater. Trans. A **34**, 2315 (2003).

12 ⁵⁴E. Frutos, J. L. González-Carrasco and T. Polcar, J. Eur. Ceram. Soc. **36**, 3235 (2016).

13 ⁵⁵S. P. Sun, J. L. Zhu, S. Gu, X. P. Li, W. N. Lei, Y. Jiang, D. Q. Yi, and G. H. Chen, Appl. Surf. Sci. **467-468**,

14 753 (2019).

15 ⁵⁶Y. Yang, Z. Song, G. Lu, Q. Zhang, B. Zhang, B. Ni, C. Wang, X. Li, L. Gu, X. Xie, H. Gao, and J. Lou,

16 Nature **594**, 57 (2021).

17 ⁵⁷C. H. Perry, G. Rupprecht and R. Geick, Phys. Rev. **146**, 543 (1966).

18 ⁵⁸G. Álvarez-Pérez, T. G. Folland, I. Errea, J. Taboada-Gutiérrez, J. Duan, J. Martín-Sánchez, A. I. F.

19 Tresguerres-Mata, J. R. Matson, A. Bylinkin, M. He, W. Ma, Q. Bao, J. I. Martín, J. D. Caldwell, A. Y.

20 Nikitin, and P. Alonso-González, Adv. Mater. **32**, 1908176 (2020).

21 ⁵⁹L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A.

22 Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science **342**, 614 (2013).

23 ⁶⁰N. C. Passler and A. Paarmann, J. Opt. Soc. Am. B **34**, 2128 (2017).

24 ⁶¹J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik,

25 A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. Ted Masselink, Appl. Opt. **51**, 6789 (2012).

26 ⁶²G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz,

27 A. H. C. Neto, J. Hone, M. M. Fogler, and D. N. Basov, Nat. Photonics **10**, 244 (2016).

28 ⁶³X. Sun, J. Shi, M. A. Washington, and T. Lu, Appl. Phys. Lett. **111**, 151603 (2017).

29 ⁶⁴H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science **264**, 1740 (1994).

30 ⁶⁵J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Adv. Phys. **61**, 745 (2012).

31 ⁶⁶M. Liu, A. J. Sternbach and D. N. Basov, Rep. Prog. Phys. **80**, 14501 (2017).

1 ⁶⁷A. Tomadin, A. Principi, J. C. W. Song, L. S. Levitov, and M. Polini, Phys. Rev. Lett. **115**, 87401 (2015).

2 ⁶⁸J. Lagois and B. Fischer, Phys. Rev. Lett. **36**, 680 (1976).

3 ⁶⁹F. DeMartini, M. Colocci, S. E. Kohn, and Y. R. Shen, Phys. Rev. Lett. **38**, 1223 (1977).

4 ⁷⁰L. Schultheis and J. Lagois, Solid State Commun. **44**, 1557 (1982).

5 ⁷¹M. E. Berkowitz, B. S. Y. Kim, G. Ni, A. S. McLeod, C. F. B. Lo, Z. Sun, G. Gu, K. Watanabe, T. Taniguchi,
6 A. J. Millis, J. C. Hone, M. M. Fogler, R. D. Averitt, and D. N. Basov, Nano Lett. **21**, 308 (2021).

7 ⁷²R. Macêdo and R. E. Camley, Phys. Rev. B **99**, 14437 (2019).

8 ⁷³J. Sloan, N. Rivera, J. D. Joannopoulos, I. Kaminer, and M. Soljačić, Phys. Rev. B **100**, 235453 (2019).

9 ⁷⁴P. Sivarajah, A. Steinbacher, B. Dastrup, J. Lu, M. Xiang, W. Ren, S. Kamba, S. Cao, and K. A. Nelson, J.
10 Appl. Phys. **125**, 213103 (2019).

11

Supplementary Material

for

Few-layer hexagonal boron nitride as a shield of brittle materials for cryogenic s-SNOM exploration of phonon polaritons

Debo Hu,¹ Cheng Luo,¹ Lixing Kang,² Mengkun Liu,³ Qing Dai^{1,a)}

¹CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

²Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou, 215123, China

³Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA

^{a)}Authors to whom correspondence should be addressed: daiq@nanoctr.cn

1. cryo-SNOM assembly inside the vacuum chamber

An annotated view of our cryo-SNOM inside the vacuum chamber is shown in Figure S1.

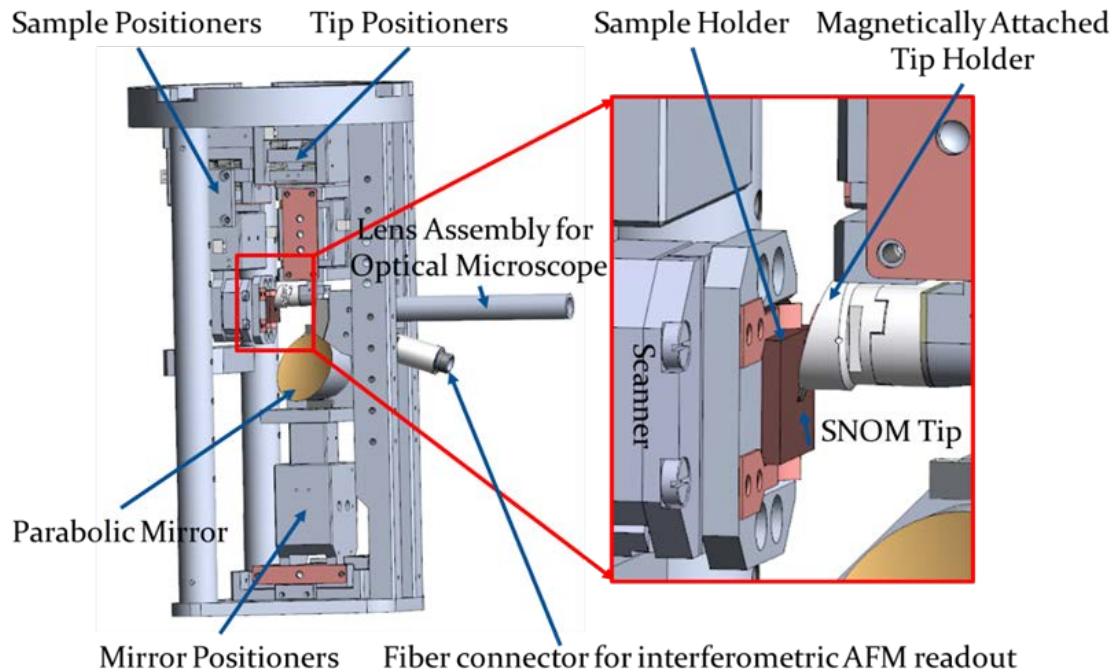


FIG. S1. 3D view of the cryo-SNOM assembly inside the vacuum chamber.

2. Applicable frequency range of the *h*BN protection layer

As shown in Figure S2, the real parts of the in-plane and the out-of-plane dielectric constants of *h*BN are both positive in the frequency range from 850 to 1350 cm⁻¹, and the imaginary parts are both less than one in the frequency range from 800 to 1200 cm⁻¹. Therefore, to avoid mode coupling and additional loss induced by the *h*BN protection layer, it is appropriate to limit the *h*BN cladding method to the frequency range from 850 to 1200 cm⁻¹.

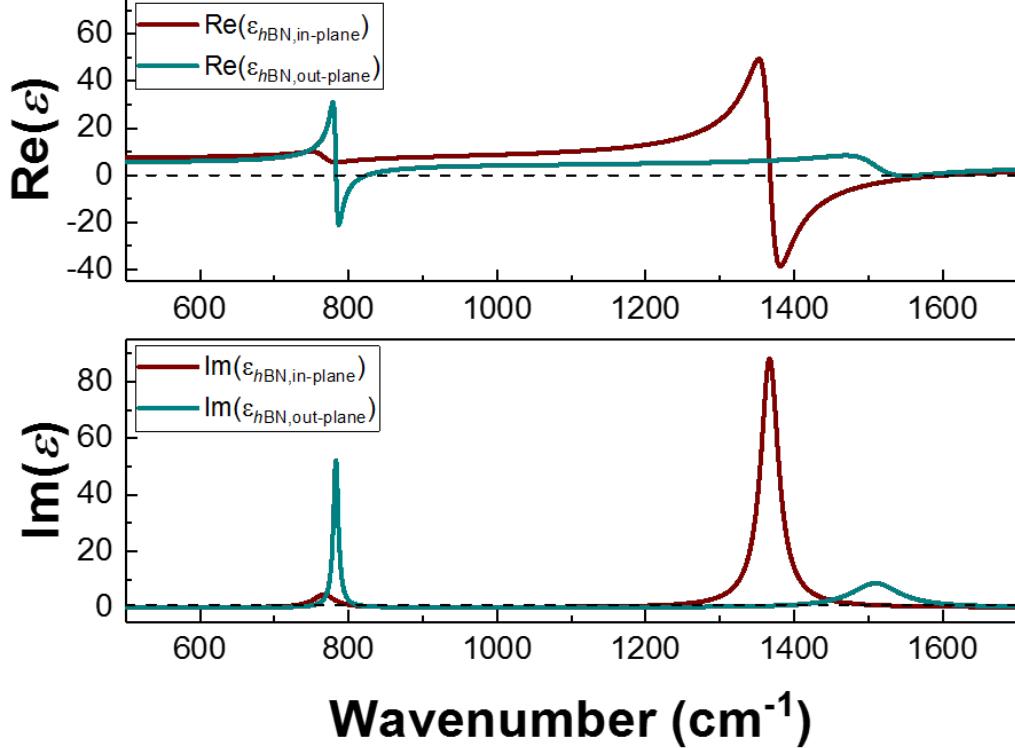


FIG. S2. Dielectric constants of *h*BN calculated based on the parameters from [Phys Rev 1966, 146, 543]. The horizontal dash lines in the upper and lower panels indicate the values zero and one, respectively.

3. Images of different demodulation order

The second- and third-harmonic demodulated cryo-SNOM images of the *h*BN cladded α -MoO₃ obtained at 90 K are shown in Figure S3. Compared with the third-harmonic demodulated image (O_3), the second-harmonic demodulated one (O_2) exhibits larger absolute signal magnitude but suffers from more background interference (a general rule of lock-in based demodulation techniques).

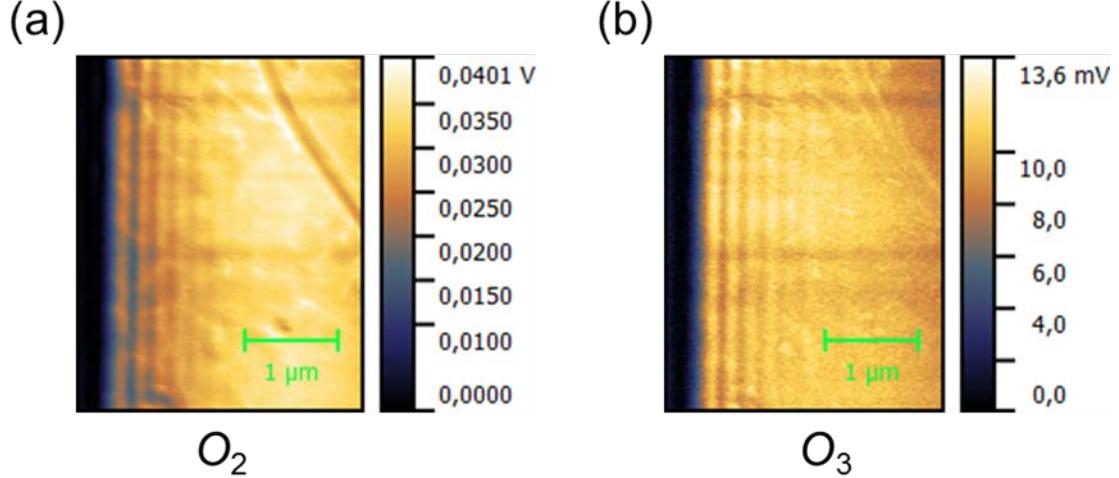


FIG. S3. (a) The second-harmonic demodulated cryo-SNOM image of *h*BN cladded α -MoO₃ obtained at 90 K. (b) The third-harmonic demodulated image.

4. Experimental results of a thicker MoO₃ sample

The Experimental results of a 155-nm-thick MoO₃ sample cladded with a 5-nm-thick *h*BN layer along the [100] direction are shown in Figure S4. As expected from theoretical calculations, the Q factors of this thicker MoO₃ are smaller than those of the thinner sample shown in Figure 3(d) in the maintext. But still, they are larger than the theoretically predicted one at room temperature.

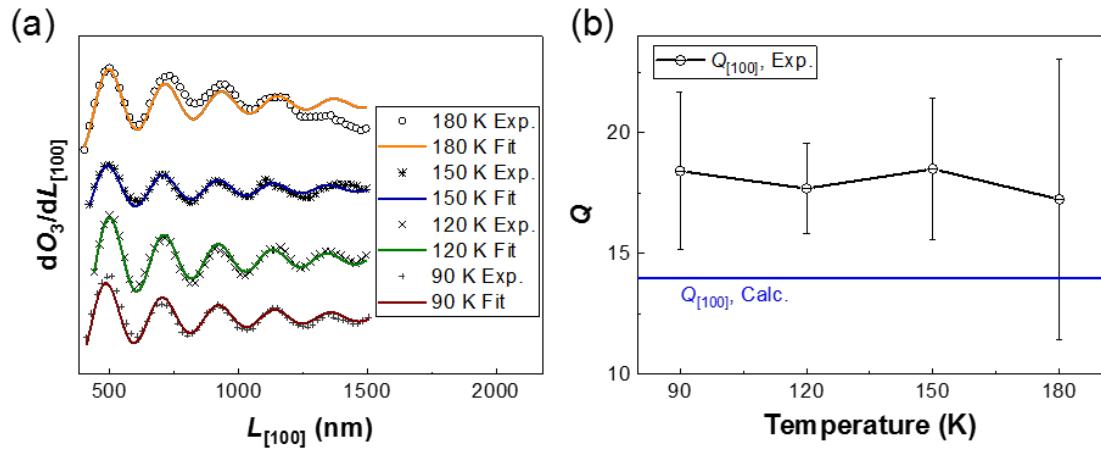


FIG. S4. (a) Experimental data points and fitted curves for the $M_{0,[100]}$ mode in a 155-nm-thick MoO₃ sample cladded with a 5-nm-thick *h*BN layer. (b) Fitted Q factors at low temperatures and the theoretically predicted Q factor at room temperature. Bars in (b) denote standard deviations.

5. Raman spectrum of bare and cladded MoO_3

Raman spectroscopy was used to evaluate whether the $h\text{BN}$ cladding layer would impose a stress on MoO_3 . As shown in Figure S5(a), the frequency shifts of the MoO_3 Raman mode near 820 cm^{-1} with the varying temperature seem to be suppressed by the $h\text{BN}$ cladding layer. While the linewidths (full width at half maxima, FWHM) in the cladded case follow a similar trend with the varying temperature to that in the case of bare MoO_3 in Figure S5(b), they exhibit relatively smaller values. These differences between the Raman spectrum of the bare and the cladded MoO_3 suggest that non-trivial strain could be generated in the $h\text{BN}/\text{MoO}_3$ heterostructure and may play a role in causing the non-monotonic behaviours of the MoO_3 SPhPs observed in our cryo-SNOM experiments.

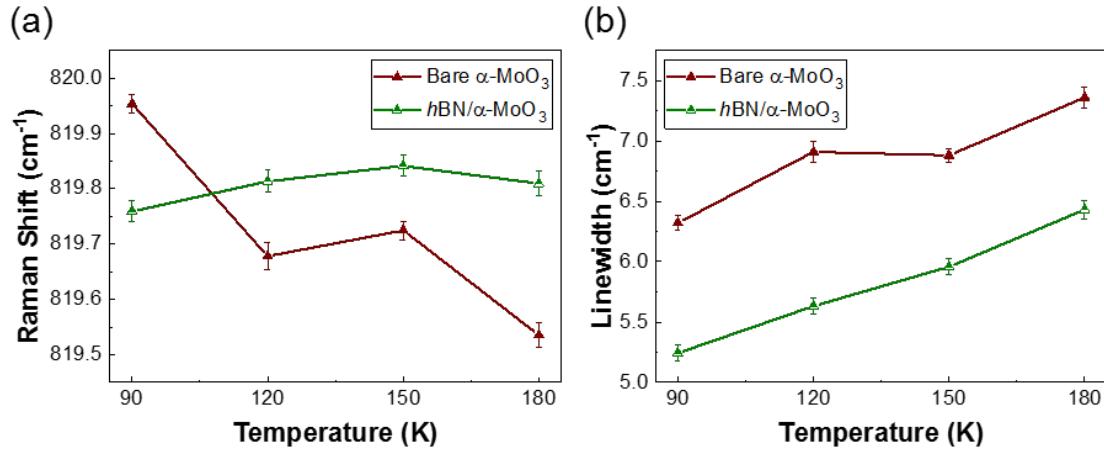


FIG. S5. (a) Temperature-dependent frequencies of the MoO_3 Raman mode near 820 cm^{-1} . (b) Temperature-dependent peak widths of the MoO_3 Raman mode near 820 cm^{-1} . Bars denote standard deviations.