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ABSTRACT: I n v an d er Waals ( vdW) h eterostructures, t he
interlayer electron−phonon coupling (EPC) provides one unique
channel t o n onlocally e ngineer t hese e lementary p articles.
However, l imited b y t he s tringent o ccurrence c onditions, t he
efficient engineering of i nterlayer EPC r emains elusive. Here we
report a multitier e ngineering of i nterlayer EPC i n WS2/boron
nitride ( BN) heterostructures, i ncluding i sotope e nrichments of
BN substrates, t emperature, and high-pressure t uning. The hyperfine i sotope dependence of Raman i ntensities was unambiguously
revealed. I n combination with t heoretical calculations, we anticipate t hat WS2/BN s upercells could i nduce Brillouin-zone-folded
phonons that contribute to the i nterlayer coupling, l eading to a complex nature of broad Raman peaks. We f urther demonstrate the
significance of a previously unexplored parameter, the interlayer spacing. By varying the temperature and high pressure, we effectively
manipulated the strengths of EPC with on/off capabilities, i ndicating critical thresholds of the l ayer−layer spacing f or activating and
strengthening i nterlayer EPC. Our findings provide new opportunities t o engineer vdW heterostructures with controlled i nterlayer
coupling.
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■ INTRODUCTION

van der Waals ( vdW) heterostructures a ssembled f rom t wo-
dimensional ( 2D) c rystals s erve a s a powerful platform f or
exploring exotic properties and novel quantum phenomena.1,2

Particles/quasiparticles, i ncluding e lectrons a nd p honons
spatially r esiding i n different l ayers, can be t ightly bound by
interlayer i nteractions, resulting i n several f ascinating phenom-
ena and potentials for electronic and optoelectronic devices.3−6

For i nstance, electron−hole pairs i n adjacent t ransition-metal
dichalcogenide ( TMD) l ayers c an b ind i nto i nterlayer
excitons.4 I n t ransferred T MD/boron n itride ( BN) v dW
heterostructures, p honons i n B N c ouple t o e lectronic
transitions o f TMDs when t he i ncident p hotons r esonate
with c ertain e xcitons i n TMDs, a ctivating o ptically s ilent
phonon modes o f BN i n Raman s cattering.5,6 I n TMDs/
amorphous SiO2 heterostructures, i nterlayer electron−phonon
coupling (EPC) activated phonons of SiO2 can participate i n
exciton i ntervalley s catterings.7,8 Conventionally, s tudies o f
EPC h ave b een f ocused o n o ne material f or a v ariety o f
physical phenomens, i ncluding carrier scattering, conventional
superconductivity, Kohn a nomalies, a nd o ptical p roperties.9

Very r ecently, i nterlayer EPC across t he vdW gap i n l ayered-
crystal heterostructures5−8,10,11 has emerged as a new t erritory

which provides a unique opportunity t o manipulate electrons
and phonons nonlocally.
In a n effort t o uncover t he mechanism of i nterlayer EPC,

Chow et al. have proposed one microscopic, phenomenological
approach where a n out-of-plane phonon mode i n TMDs i s
critical a nd bridges t he c oupling between BN phonons a nd
TMD e xcitons.8 I n T MD l ayers, t his p articular p honon
interacts with excitons by an i ntralayer EPC, and t wo out-of-
plane phonons s eparated by a vdW gap (one i n TMD l ayers
and t he other i n BN l ayers) c an be c oupled t ogether by a n
interlayer d ipole−dipole i nteraction. With r egard t o i ts
manipulation, electrostatic doping t hat works f or conventional
EPC t uning i n o ne material h as b een d emonstrated f or
interlayer E PC w ith p oor e fficiency, y ielding c ompletely
disappearing R aman s ignals a t a r elatively l ow d oping
level.5,11 A p ostannealing t reatment e nhanced t he c oupling
strength a t i nterfaces o f TMDs a nd S iO2.

7 Despite t hese
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advances, an i n-depth understanding and efficient engineering

of i nterlayer E PC r emain i n t heir i nfancy. T herefore, a 

multitier approach utilizing a series of experimental techniques

to t ackle t his problem i s highly desirable. This not only can

expand practical potentials of i nterlayer EPC but also provide a

glimpse i nto i ts underlying mechanism.

Here we r eport t he i sotope, t emperature, and high-pressure
engineering of i nterlayer EPC, a s i llustrated i n Figure 1a, i n
directly g rown a nd c onventionally t ransferred WS2/BN
heterostructures. T he p honon e ngineering b y i sotopic
substitutions o f B N l ayers r eveals u nprecedented i sotope-
dependent Raman i ntensities, s uggesting t he WS2/BN s uper-
cell-induced complexity of phonon structures i n the process of

Figure 1. Engineering i nterlayer EPC i n vdW heterostructure of WS2 and BN. (a) Illustration of multitier engineering means of i nterlayer electron
(in WS2) and phonon (in BN) coupling, i ncluding i sotope engineering i n BN, t emperature, and pressure. (b) Representative optical i mage (left
panel) of one vdW heterostructure, showing partially covered WS2 i slands by CVD. Raman (middle panel) and PL mapping (right panel) were
conducted to confirm the quality and targeted areas with good uniformity for further measurements. (c) Cross-sectional STEM i mage, showing the
contamination-free i nterface and close contact between WS2 and BN.

Figure 2. Isotopically dependent Raman spectra. (a) Raman spectra of WS2 and vdW heterostructures with 2.33 eV excitation, on resonance with
the B exciton i n WS2, showing i n t he heterostructures t he presence of t wo asymmetrical and broad peaks around 800 cm−1 a  ssigned t o A and B
modes i n BN. (b) Calculated phonon dispersion of ML-WS2/six-layer-

NaBN heterostructure. The blue (red) r ectangle represents t he t heoretical
assignment f or the A (B) mode. (c) Statistics of the i ntensity ratio of A and B peaks (A/B) f rom more than 50 heterostructures, showing distinct
isotope dependence. (d) Intensity ratio A/B as a f unction of the l aser power i n the range of 40 μW and 5 mW, displaying a constant value of ∼0.5
in WS2/

10BN stacks and a fluctuating r atio f rom 2.0 t o 3.5 i n WS2/
11BN heterostructures.
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interlayer coupling. Our study demonstrates the significance of
the interlayer spacing between TMDs and BN l ayers. By tuning
the i nterfacial s pacing t hrough t emperature and pressure, we
can e ffectively manipulate t he s trength o f t he i nterlayer
coupling with t he capabilities of t urn-on and - off.

■ RESULTS
Isotopically E ngineered WS2/BN H eterostructures.

First we e xamined t he i sotope disorder e ffect on i nterlayer
EPC by purifying BN substrates as 10B N or 1        1B N. By a molten
metal fl ux method, i sotopically e nriched BN c rystals were
synthesized a t h igh t emperature ( ∼1600 ° C, Methods a nd
Materials and Figure S1 i n t he Supporting Information) using
boron p owder w ith a n u ltrahigh i sotope p urity.12 I n
comparison with t he natural i sotope variation (20.1 a tom %
10B and 79.1 atom % 1 1B), boron-10 (97.18 atom % 1 0B) and
boron-11 (99.69 atom % 11B) powders and ultrahigh-purity N2
(naturally 9 9.6 a tom % 14N  ) e nsure t he monoisotopic
characteristic o f a s-grown B N c rystals.13,14 We p erformed
Raman, F ourier-transform i nfrared ( FTIR), a nd v ibrational
electron e nergy l oss s pectroscopy ( EELS) measurements,
confirming t he a tomic-mass-dependent f requency o f l attice
vibrations t hat i s o ne n atural c onsequence o f i sotope
engineering15−17 (    Figure S 1). Next, i sotopically e ngineered
heterostructures w ere p repared b y t he c hemical v apor
deposition ( CVD) o f WS2 o n t ape-exfoliated B N fl akes18

(Methods and Materials).
Instead o f mechanical s tacking where i mpurities a t t he

interface are inevitable, the growth of WS2 on prefabricated BN
flakes provides polymer-free i nterfaces, l arge-scale uniformity,
and more importantly, a close contact between WS2 and BN by
the high growth temperature (>900 °C). Heterostructures with
a BN thickness of 20−100 nm were deliberately chosen. Figure
1b d isplays a n o ptical i mage o f o ne r epresentative h etero-
structure, clearly s howing partially covered WS2 domains. 2D
Raman and photoluminescence (PL) mappings show wrinkles
and grain boundaries, consistent with f eatures observed f rom
optical i mages. The area with uniform optical properties (∼3
μm by 3 μm) was selected for f urther i nvestigations. The high-
quality i nterface i s directly confirmed at the atomic l evel by the
cross-section i mage o f a s canning t ransmission e lectron
microscope ( STEM). Figure 1 c d isplays o ne r epresentative
BN flake−WS2 monolayer (ML) i nterface, clearly showing t he
contaminant-free v dW i nterface. While t he l ayer distance i n
BN flakes i s 3.26 Å, the i nterlayer spacing between the BN and
W l ayers i s 5.30 Å, and t he BN−sulfur l ayer−layer distance i s
∼3.2 Å, demonstrating eliminated differences i n l ayer spacing
in CVD-grown heterostructures.
Isotopically Dependent Raman Spectra. Raman meas-

urements on three types of heterostructures were performed at
room t emperature (RT) with an excitation energy of 2.33 eV,
which resonates with t he B exciton of WS2.

10 Figure 2a shows
the t ypical r esults f rom heterostructures a nd t he s tandalone
CVD-grown WS2 on t he substrate (Figure S2a and Table S1).
The most notable observation i s t he presence of several peaks
that c annot b e a ssigned t o Raman-active modes f rom t he
SiO2/Si s ubstrate, WS2                     , o r BN, i ncluding t wo b road p eaks
within 1400−1600 c m−1 a nd peaks a t a round 800 c m−1. As
exemplified by t he WS2/natural BN ( NaBN) heterostructure,
two emerging Raman peaks are l ocated at 772 and 805 cm−1, 
respectively (Figure S2c), which were previously attributed t o
the i nterlayer EPC-induced BN A2u mode of t he ZO2 branch
and the B1g mode i n the ZO3 branch, respectively.

10 From t he

aspect of symmetry, while t he envelope of t he B exciton wave
function i s azimuthally s ymmetrical with t he orbitals pointing
along the z direction, A2u and B1g modes i n BN i nvolve out-of-
plane v ibrations a long z ( Figure S 3a).19 The i ntensity o f
interlayer EPC-induced Raman p eaks c an b e t remendously
enhanced when the i rradiated l aser resonates with one specific
exciton of TMDs.5,6,8 The combination of WS2 and 2.33 eV
power of the l aser was chosen deliberately i n our experiment.10

Also, t he s trong E PC d etected i n o ur h eterostructures
corroborates t he high quality of crystals and i nterface by t he
CVD growth.
We f ound t hat t hese t wo peaks possess highly asymmetrical

line shapes and are much broader t han E2g Raman peaks: t he
full widths at half-maximum (fwhm) of 24 and 45 cm−1 for the
two peaks are i n marked contrast to 7.5 cm−1 f  or the E2g mode
of BN. Theoretical i nvestigations f or phonon band s tructures
were performed, and the calculated phonon dispersion of ML-
WS2/six-layer-

NaBN h eterostructure i s s hown i n F igure 2 b
(Note 1 and Figure S3 i n the Supporting Information). Due to
the l attice mismatch, a supercell between BN and WS2 i n t he
heterostructures means t hat t he ZO phonon branches of BN
are f olded, l eading to two groups of phonon modes l abeled by
A a nd B i n Figure 2 b. S uperpositions o f t hese modes a re
believed t o be responsible f or t wo broad peaks at around 800
cm−1 i  n Raman s pectra. S o f ar, a ll o f t he e xperimentally
observed Raman p eaks i nduced b y i nterlayer EPC p ossess
much l arger f whms ( including p honon modes o f S iO2),
supporting o ur e xplanation ( Note 1 i n t he S upporting
Information). Here we e mphasize t hat t he s upercell of BN
and TMDs r enders BN phonons i nvolved i n i nterlayer EPC
much more c omplicated. T his s upercell-induced c omplex
nature of BN phonons not only blurs t he precise r ecognition
of exact atomic vibration modes t hat couple t o electrons but
also obscures t he microscopic mechanism of i nterlayer EPC
that we will show l ater.
Interestingly, an apparent i sotope effect on A and B peaks

was a lso o bserved. EPC-induced p eaks e xhibit a s ignificant
frequency s hift upon i sotopic boron s ubstitutions: 787 c m−1

(A) and 817 cm−1 (B) i n 1        0B N stacks, i n comparison with 767
cm−1 (  A) and 800 cm−1 (  B) i n 1         1B N heterostructures (Figure
S2b−d), demonstrating t he f requency dependence on atomic
mass f or i nduced b ut o riginally s ilent R aman p eaks.20,21

Moreover, i n Figure 2a we found that the B peak i s higher than
the A peak for the WS2/

10BN sample, while the A peak i s more
predominant i n t he WS2/

11BN heterostructure ( Figure S2).
We t hen c arried o ut R aman measurements o n multiple
heterostructures (more t han 50) and summarize t he i ntensity
ratio of A a nd B peaks ( A/B) i n Figure 2c, unambiguously
showing the same behavior i n all samples, despite the variation
of BN t hickness. Additionally, t he r esults of excitation-power-
dependent Raman measurements (Figure S4a) are summarized
in Figure 2d. I n 1 0BN s ystems A/B i s consistently about 0.5;
for WS2/

11BN s amples A/B i ncreases f rom ∼2.0 t o 3.5 with
the l aser p ower. By v ariation o f t he e xcitation p ower, t he
density of t he B exciton i n WS2 i s consequently modulated. It
turns out t hat t he i sotope dependence of Raman i ntensities i s
insensitive to the l aser power or exciton density, i ndicating that
it could be an i ntrinsic characteristic affiliated with i sotopically
engineered v dW heterostructures. Furthermore, t his i sotope-
governed Raman s pectrum i s q uite r obust, a nd t he s ame
phenomena can be observed after 1 year of sample storage i n
air (Figure S4b).
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The previous experiment s howed t hat atomic displacement
parameters a re l arger f or 10B  N t han f or 1                  1B  N c rystals,
constitutionally l eading t o different dipole s trengths ( Figure
S5).13 One possible i nterpretation f or i sotope-sensitive Raman
intensities c ould be t hat by t he i sotope s ubstitution i n BN,
interlayer d ipole−dipole i nteractions c an b e c onsequently
modulated, engineering i nterlayer EPC.8 For bulk BN, t he A2u
and B1g modes have the same i ntralayer vibrational pattern but
the o pposite i nterlayer v ibrational p attern: i .e., a ntiphase
displacement i n a djacent l ayers f or t he A2u mode while i n-
phase i n adjacent l ayers f or t he B1g mode (Figure S5). As a
result, t he A 2u mode p ossesses a n o ut-of-plane i nterlayer
electric dipole, while t he B1g mode does not.10 Because t he
interlayer e lectric d ipole i s p roportional t o t he a tomic
displacement amplitudes, we expect t hat t he i nterlayer dipole
of the A2u mode could be l arger f or 10BN than f or 1              1B N, which
might g ive r ise t o t he l arger interlayer d ipole−dipole
interaction a nd s tronger A p eak Raman i ntensity i n 10BN
systems t han i n 11B  N s ystems. However, t his a nalysis i s
inconsistent with o ur e xperimental o bservation o f A/B i n
Figure 2a. As was discussed above, phonon branches of BN are
folded d ue t o WS2/BN s upercells i n t he h eterostructures;
therefore, both A and B peaks actually correspond to mixtures
of multiple phonon modes. This s ignificantly complicates t he
situation, which probably r enders t he s imple model based on
the dipole−dipole i nteractions of A2u and B1g modes i nvalid to
explain our experimental findings. Namely, i nstead of vibration
modes i n f reestanding B N, w e n eed t o c onsider t he
“renormalized” BN phonons by TMD/BN s upercells a t t he
interface. Direct t heoretical calculations of i nterlayer EPC i n
isotopically engineered heterostructures are r equired f or a f ull
understanding; however, such calculations are computationally
prohibitive due t o l arge s upercell s izes and atom number. I n
addition, t heoretical e stimations o f i nterlayer E PC w ere
performed b y i nvestigating t he b and g ap r enormalizations
caused b y A a nd B b ranches ( Note 2 i n t he S upporting
Information), i n w hich t he i nterlayer E PC w as f urther
confirmed but i ts i sotope dependence s till could not be well
understood.
Isotopically d ependent R aman s pectra o f v dW h etero-

structures c learly r evealed o ne c haracteristic o f i nterlayer
EPC: t hat i s, t he s upercell-induced c omplexities i n both t he
phonon s tructures a nd t he c onsequent i nterlayer d ipole−
dipole i nteractions. Moreover, i n o ur e xperiment i sotope

effects o n 2 D c rystals h ave e xtended t o i sotope v dW
heterostructures.13,14,22,23

Temperature Tuning. As displayed i n Figure 3a, i n t he
range of 77−473 K t he i ntensities of EPC-induced A and B
peaks decrease unambiguously with i ncreased temperature and
signals vanish above 476 K f or both 10B N and 1          1B N s ystems.
Two prominent vibrational modes, E2g

1 and A1g, of WS2 can be
obviously o bserved w ithin t he s ame t emperature r ange,
indicating t he u naltered s ample q uality ( Figure S 4c). I n
sharp c ontrast, originally Raman a ctive s hear a nd breathing
modes o f B N fl akes a re q uite r obust a t h igh t emper-
atures.15−17,24 W      e f urther c hecked t he WS2/

NaBN h etero-
structures, v erifying t he s ame t emperature-dependent behav-
iors ( Figure S 4d). Furthermore, Raman s pectra r eappeared
when t he t emperature was r eturned t o RT and exhibited t he
same modulation when t he t emperature was v aried a gain,
demonstrating a c ontrolled, r eversible, a nd n ondestructive
response. To deduce t he c onventional t emperature e ffect of
phonons, t he i ntensity r atio between t he A (B) peak and t he
E2g mode i s summarized i n Figure 3b, showing the monotonic
decrease u pon a n i ncrease i n t emperature a nd t he i sotope
dependence of A/B.
This discrepancy demonstrates t hat t he t emperature can be

utilized t o t une EPC-induced Raman i ntensities, probably by
modulating t he s trength of i nterlayer EPC. We first consider
the e nergy r esonance prerequisite f or i nterlayer EPC, s ince
excitons of ML WS2 s hift t o higher e nergy with decreasing
temperature. T he s ynchronously a cquired t emperature-de-
pendent PL s pectra present a n a pparent blue s hift of ∼0.17
eV f or t he A exciton f rom 673 t o 77 K ( Figure S4e). With
regard to the B exciton of ML WS2, previous studies show that
its energy s hifts f rom 2.37 eV at RT t o 2.44 eV at 100 K,25

indicating an i ncreased mismatch between photon and exciton
energies w hen t he t emperature i s r educed. T his l arger
deviation f rom t he e nergy r esonance a t l ower t emperature
contradicts t he o bserved e nhanced E PC a t a c ryogenic
temperature. I n a ddition, when t he e nergy r esonance meets
at RT, temperature alteration toward either side (up or down)
will a ggravate t he divergence, l eading t o t he Λ-shaped EPC
strength o pposite t o t he o bserved monotonic b ehavior.
Second, w hile t he more e fficient e xcitonic e ffect a t l ow
temperatures can be utilized to i nterpret the enhanced A and B
peaks, i t c an b e q uite c hallenging t o e xplain t he c omplete
absence of EPC Raman signals at elevated t emperatures along

Figure 3. Temperature-dependent measurements. (a) Raman spectra of WS2/
11BN (left panel) and WS2/

10BN (right panel) heterostructures from
77 t o 673 K. The i nterlayer EPC-induced Raman peaks were e nhanced a t l ow t emperature a nd g radually v anished a bove 476 K f or both
heterostructures. (b) Intensity ratios between t he A (B) and E2g peaks i n t wo t ypes of heterostructures as a f unction of t emperature, showing t he
same monotonic r esponse.
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this d irection, a s t he A e xciton e mission s urvives a t h igh
temperatures (Figure S4e).
Another s ignificant p arameter d etermining t he c oupling

strength i s t he physical l ayer−layer s pacing between BN and
WS2, which i s strongly and positively related to temperature.26

As a r esult of t he weak v dW bonding, l arge t uning i n l ayer
spacing by t hermal expansion has been r evealed i n vertically
stacked heterostructures and drove a direct−indirect band gap
transition f or a MoS2−WS2 bilayer.27,28 Here, t he i nterlayer
spacing i ncreases with i ncreasing t emperature, a nd t hus t he
interlayer EPC i s weakened, c ontributing t o t he decrease i n
Raman i ntensities. I n other words, t he i nterlayer coupling of
phonons and electrons can be l argely engineered by t hermally
tuning t he l ayer−layer distance. I n comparison with engineer-
ing a c onventional E PC i n o ne material, f or e xample,
electrostatic gating to change the electron screen, for i nterlayer
EPC with a nonlocal f eature (coupling across the vdW gap), a
precise t uning b y t he e lectron/exciton d ensity ( Figure 2 d)
failed. I nstead, i nterlayer EPC r esponds s ignificantly t o t he
physical distance i n a controlled, reversible, and nondestructive
way, which even can turn “on and off” the coupling at l ow and
high temperatures, respectively. Furthermore, the threshold f or
activating i nterlayer EPC i s ∼3.20−3.23 Å by a n e stimation
with t he t hermal expansion of WS2 and BN crystals (Note 3
and Figure S7 i n t he Supporting I nformation).29

High-Pressure E xperiments. P ressure e ngineering h as
been f urther p erformed f or a b etter u nderstanding o f t he
mechanism of i nterlayer EPC. We applied hydrostatic pressure
using a diamond anvil cell (DAC), a powerful t ool capable of
tuning t he v ibrational a nd electronic properties of materials
(Figure 4 a).30−33 T     o minimize t he i nfluence o f d iamond
substrates, vdW heterostructures of ML WS2 encapsulated i n
BN flakes (thickness 5−20 nm) were constructed by a vdW
pick-up and t hen t ransferred onto t he DAC.34 I n contrast t o
CVD-grown v dW h eterostructures, t hese s tacks b y t ransfer
show a f aint Raman signal at around 800 cm−1, signifying t he
relatively p oor c ontact b etween WS2 a nd B N l ayers a nd
consequent weak i nterlayer coupling solely by t ransfer (Figure
4b). Surprisingly, after one l oad−unload cycle of high pressure,
two l egible Raman peaks l ocated at 774 and 805 cm−1 can be
observed with uninfluenced Raman peaks of WS2 between 300
and 750 cm−1, strongly suggesting an i rreversible i mprovement
of a WS2/BN contact and i nterface quality. By compression of
the WS2/BN spacing, the high pressure strengthens the l ayer−
layer c oupling i n s ystems w ith o riginally p oor i nterlayer
interactions.
Raman measurements at various pressures were conducted

to probe t he t ransition and any i ntermediate s tates. For t wo
prominent v ibrational modes (E2g

1 a nd A1g) of WS2 (Figure
S8a), one can see t he hardening of both modes with pressure
(Figure S8b), consistent with previous studies.35−37 We

Figure 4. Pressure engineering i n t ransferred WS2/BN heterostructures. (a) Left panel: s chematic of BN-sandwiched WS2 i n a DAC f or high-
pressure experiments. Right panel: optical micrograph of t he BN/WS2/BN heterostructure on t he diamond substrate. (b) Raman spectra of BN/
WS2/BN heterostructure t aken before ( blue l ine) a nd a fter t he c ompression c ycle ( red l ine). The EPC s ignal ( gray r ectangle) i s obviously
enhanced with the other Raman peaks of WS2 remaining unchanged. (c) Raman spectra of the EPC-induced Raman modes (gray rectangle) i n the
BN/WS2/BN heterostructure under different pressures, showing an “off−on−off” r esponse with r espect t o pressure.
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noticed t he g radual d isappearance o f t he t wo p eaks a t a 
pressure higher than 10.8 GPa, which i s i nduced by high l attice
distortions. As s hown i n Figure 4c, EPC s ignals a re a bsent
below 3.2 GPa and gradually i ncrease with pressure (up t o 9
GPa) a nd e ventually disappear on a pplication of a pressure
above 11.9 GPa. We correlate t his finding with t he pressure-
compressed i nterlayer s pacing. The a bsence of EPC-induced
Raman p eaks v erifies t he p oor l ayer−layer c ontact b y t he
mechanical t ransfer i n an ambient environment, i n contrast t o
CVD-grown s amples. With i ncreasing pressure, t he i nterlayer
spacing can be l argely r educed35,37 and r eaches t he t hreshold
distance for effective interlayer coupling. The interlayer spacing
under 9 GPa i s f urther estimated to be ∼2.75−2.99 Å (Note 4
in t he Supporting I nformation). The disappearance of EPC
signals at higher pressure i s t hen attributed t o a l arge l attice
distortion, consistent with t he Raman behaviors (Figure S8a).
Measurements on more WS2/BN heterostructure exhibit t he
same pressure dependence (Figure S8c).
It h as b een s hown t hat t he e lectronic s tructures o f

monolayer TMDs and i ts heterostructures can be well t uned
by h igh p ressure.33 F or e xample, o ur s ynchronized P L
measurements on ML WS2 a lso r eveal a c lear blue s hift a t
1.95 GPa a nd s ignal q uenching o ccurring a t ∼3.83 GPa,
indicating a p ressure-induced d irect−indirect b and g ap
transition ( Figure S 8d). Our Raman r esults s how t hat, i n
addition t o t he i nterlayer electron−hole i nteraction, i nterlayer
coupling between phonons and electrons can be enhanced as
well through reduced physical l ayer−layer distances when high
pressure i s applied i n vdW heterostructures. By combining the
findings of temperature and pressure tunings, we conclude that
there could be one critical threshold of the BN−WS2 i nterlayer
spacing to determine whether the i nterlayer coupling occurs or
not.

■ DISCUSSION

The e merging i nterlayer E PC i s o ne a dvantage f or v dW
heterostructures a s o ne n onlocal w ay o f modulating t he
electron a nd phonon behaviors a cross v dW gaps. While t he
underlying mechanism i s n ot well u nderstood, i n t erms o f
engineering p reviously o nly e lectrostatic d oping a nd p ost-
annealing have been demonstrated, and both unfortunately did
not s hed more l ight on t he f undamental mechanism. I n t he
present work, by t uning t he i sotope disorder degree on t he
“phonon” s ide, w e r evealed t he r obust a nd h yperfine
fingerprint of i sotope dependence that emphasizes the i ntrinsic
complexity of i nterlayer EPC originating f rom t he BN−WS2
supercell. The t emperature t uning deciphers t he existence of
an i nterlayer t hreshold f or i nitiating t he e ffective i nterfacial
coupling; high pressure enhances the coupling of electrons and
phonons i n s ystems with p oor c ontacts. Temperature a nd
pressure e ngineering b oth e mphasize o ne c ritical b ut
previously l ess e xplored p arameter, t he p hysical i nterlayer
distance. The computationally demanding calculations of EPC
coupling strength i n WS2/BN heterostructures as a f unction of
interlayer s pacing w ould b e h ighly b eneficial t o g ain a 
fundamental understanding of t he effects of i sotope, t emper-
ature, and pressure on i nterlayer EPC-activated Raman events.
Our work on engineering i nterlayer EPC not only advances the
understanding of nonlocal particles/quasiparticles i nteractions
but a lso e nables p ractical ways t o e ngineer v dW h etero-
structures with potentials f or novel e lectronic a nd optoelec-
tronic applications.5,38
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