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As a promising environmental t reatment t echnology, photocatalysis has been i nvestigated f or decades
and even t entatively practiced i n actual l arge-scale applications. However, most r esearches f ocus on
photocatalytic kinetics (excitation, charge transfer, and surface reaction) but ignore the significant impact
of oxygen i nterfacial mass transfer f or photocatalytic aerobic oxidation i n aqueous media. Here, we use
finite element simulation t o demonstrate t hat during photocatalysis, t he r emained l ocal oxygen con-
centration for photocatalysts at a gas-liquid-solid triphase interface is much higher than that dispersed in
a bulk l iquid phase. Photocatalyst consisting of Au/TiO2 nanoparticles supported at t riphase i nterface
shows a non-diffusion l imited c harge s eparation f or oxygen photoactivation, t herefore a chieving a 
photodegradation efficiency of about 85% t oward bisphenol A. Furthermore, we develop a flowing t ri-
phase photocatalytic system t hat exhibits a t unable one-way photodegradation efficiency f rom 10% t o
60% and a photostability for up to 50 h of continuous irradiation, further demonstrating the potential for
large-scale applications.
1. I ntroduction

Environmental problems, especially water pollution, are signif-
icant i ssues closely r elated t o human s urvival and development
that urgently need to be resolved on a global scale [1,2]. Bisphenol A
[BPA, 2,2-bis(4-hydroxyphenyl)propane], a primary chemical raw
material widely used i n t he production of e poxy r esins, poly-
carbonate p lastics a nd l eather, i s o ne o f t he most c ommon
endocrine-disrupting substances that can interferewith the human
endocrine s ystem [ 3]. B PA i s o ne a ntioxidant t hat i s n on-
biodegradable and highly resistant t o chemical degradation [ 3,4],
making i t difficult f or conventional organic wastewater treatment
methods to efficiently remove BPA i n water.

Semiconductor-based photocatalytic aerobic oxidation [5e7] i s
a promising water t reatment t echnology t o use solar energy f or
rui@mail.ipc.ac.cn (T. Zhang).
water r emediation [ 8e10]. TiO2 i s one of t he most i nvestigated
photocatalysts f eatured b y i ts g ood a ctivity, n on-toxicity, a nd
chemical stability [11,12]. The modification strategy of l oading no-
ble metals as cocatalysts can promote the migration of carriers and
then waken the charge recombination over TiO2. Especially for Au/
TiO2, the Fermi level of Au nanoparticles is significantly lower than
the conduction band of TiO2 [ 13,14], s o electrons excited t o t he
conduction band c an s pontaneously migrate t o t he Au s urface,
hence converting oxygen i nto reactive oxygen species (ROS), such
as $ O2

� a  nd $ OH, t hat c an directly participate i n t he pollutant
oxidation r eaction. This aerobic oxidation process s hows unique
advantages i n mineralizing c hemically s table organic pollutants
(such as phenol and other aromatic c ompounds) i nto i norganic
carbons [15e17].

The mass t ransfer process t hat determines t he l ocal concen-
tration of reactants at the reaction i nterface also has considerable
impacts on t he performance of heterogeneous c atalysis [ 18]. I n
conventional l iquid-solid diphase photocatalytic s ystems, where
photocatalytic nanomaterials are dispersed in bulk aqueous media,
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ROS can only be generated from dissolved oxygen that diffuses very
slowly i n the water phase. The mass transfer of oxygen molecules
on t he s urface o f p hotocatalysts might b e a n i nsurmountable
obstacle t o i ncrease t he overall photocatalytic r eaction r ate [ 19].
The construction of gas-liquid-solid triphase interfaces can alter the
interfacial mass transfer behavior of the gas reactant molecules and
directly affect t he kinetics of t he catalytic reaction [ 20,21]. Theo-
retically, t riphase photocatalysis r ealizes t he effective contact of
oxygen, water, and photocatalysts, resulting i n the rapid supply of
oxygen from the gas phase i nstead of dissolved oxygen molecules
from t he water phase [ 22]. Feng et al. [ 18] developed a t riphase
photocatalytic s ystem i n which t he photocatalytic r eaction c an
proceed at t he gas-liquid-solid t hree-phase i nterface, s howing a
high photodegradation efficiency t oward salicylic acid. However,
the l ocal oxygen c oncentration on t he s urface of photocatalysts
during photocatalytic reactions and i ts relationship toward charge
separation and photodegradation efficiencies has yet t o be well
understood. Besides, previous t riphase photocatalytic oxidation
reactions mainly focused on dye molecules, the activity i n dealing
with refractory organic pollutants such as BPA remains to be further
investigated.

Herein, we i nvestigate the photocatalytic aerobic oxidation re-
action f or BPA degradation by constructing a gas-liquid-solid t ri-
phase s ystem, i n which hydrophilic Au/TiO2 nanoparticles a re
supported at the air-water boundary. Through finite element sim-
ulations, we find that during photocatalysis, the triphase i nterface
can maintain a r elatively h igh l ocal o xygen c oncentration. I n
contrast, t he dissolved oxygen i n t he diphase system where t he
catalyst is immersed in the bulk liquid phase will be quickly run out
as t he photocatalytic r eaction progresses. T he t riphase photo-
catalytic system has a much higher BPA degradation percentage up
to 85%, while BPA i n t he diphase system can hardly be degraded
mainly because of the interfacial oxygenmass transfer limitation. In
addition, we have obtained up to 50 h of photocatalytic stability in a
flowing t riphase photocatalytic system, showing i ts potential f or
large-scale practical applications.

2. Materials and methods

2.1. C hemicals and materials

TiO2 (P25) was purchased fromDegussa AG. HAuCl4 and ethanol
were obtained f rom Aladdin. NaBH4 was purchased f rom Guang-
dong Guanghua Chemical F actory Co., L td. BPA, 4,40-Sulfonyldi-
phenol (BPS) and 4,40-(Hexafluoroisopropylidene)diphenol (BPAF)
were acquired f rom I nnochem. All chemicals were used without
further purification. Microporous carbon gas diffusion layers (GDLs)
were p urchased f rom Germany F reudenberg ( H14C9). Doubly
distilled water was used i n all experiments.

2.2. P hotocatalyst preparation

Preparation of photocatalysts Au/TiO2: Au nanoparticles were
loaded on TiO2 photocatalysts via a NaBH4 reduction method. The
precursor was HAuCl4$4H2O. I n more d etail, 1 .0 g T iO2 was
dispersed i nto 1 00 mL water, f ollowed b y u ltrasonication f or
30 min. Then 200 mL aqueous HAuCl4 solution (50 mg/L for Au) was
added to the suspension by ultrasonication for 5 min. Then 10 mL
aqueous NaBH4 solution ( 0.5 mg/mL) was added dropwise t o the
suspension under stirring, with the color of the suspension grad-
ually turning purple. After further stirring for 2 h, the samples were
centrifuged and washed with water three times, and then vacuum
freeze-dried for 24 h.

Preparation of Au/TiO2 immobilized GDL: Au/TiO2 distributed in
ethanol ( 0.5 mg/mL) was sonicated f or at l east 30 min t o f orm a
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uniform dispersion. Then, Au/TiO2 was i mmobilized onto the sur-
face of GDL s ubstrate by dripping a 5 mL s uspension onto t he
surface of GDL and dried under i nfrared l ight f or 1 h t o f orm a
photocatalysts layer with an area of 3.5 � 3.5 cm2, receiving an Au/
TiO2 i mmobilized GDL with a loading amount 0.2 mg/cm2. For the
Au/TiO2 immobilized GDL used in the flowing test, the area of GDL
was 5.0� 5.0 cm2, the corresponding dispersion volumewas 10mL,
and other operations were the same. For diphase system prepara-
tion, t he Au/TiO2 was i mmobilized onto a quartz plate substrate
using the same method.

2.3. C haracterization

Morphologies of the samples were observed by scanning elec-
tron microscopy ( SEM, Hitachi, S4800, J apan) and t ransmission
electron microscope ( TEM, J EM, 2100F, J apan). The structure and
crystallization of the particles were examined by X-ray diffraction
(Bruker AXSD8 Advance, Germany) equipped with a Cu Ka radia-
tion source (l ¼ 1.5405 Å) operating at 40 kV. X-ray photoelectron
spectroscopy (XPS) data were obtained on ESCALAB 250Xi (Thermo
Fisher S cientific, U SA) u sing monochromatic A l-Ka r adiation
(hn ¼ 1486.6 eV) as t he excitation source. Binding energies were
calibrated by the C1s peak at 284.8 eV of neutral carbon. The diffuse
reflection spectra of the as-prepared photocatalyst powders were
recorded on Cary 7000 (Agilent) spectrometer with an i ntegrating
sphere attachment. A contact angle system ( OCA20, Dataphysics,
Germany) was used to measure the contact angles, with the probe
liquid being a 2.0 mL droplet of water. The result was average values
obtained f rom more than three different positions. Photocatalytic
performance was measured b y a u ltraviolet-visible ( UVeVis)
spectrophotometer ( Hitachi U -3900). O xygen r adicals w ere
measured b y e lectron p aramagnetic r esonance s pectroscopy
(Bruker E500, Germany). The total organic carbon (TOC) of samples
was measured by a TOC analyzer (Analytik Jena Multi N/C TOC/TN,
Germany).

2.4. P hotoelectrochemical measurement

The photoelectrochemical measurements were carried out on
an e lectrochemical workstation ( CHI 660e) using a homemade
microfluidic reactor equipped with a quartz window as t he pho-
toelectrochemical cell. 1 M Na2SO4 aqueous solutionwas used as an
electrolyte. Ag/AgCl and Pt wirewere used as reference and counter
electrodes, respectively. The working electrodes were prepared by
dripping 400 mL of Au/TiO2 dispersion (0.5 mg/mL) onto the GDL to
form an area of 1 cm2. For the triphase photocurrent test, the Au/
TiO2-immobilized GDL was directly used as the working electrode.
For the diphase photocurrent test, the GDL of theworking electrode
was uniformly coated with vacuum silicone grease to diminish gas
diffusion f rom the gas phase. The photocurrent tests were carried
out at a potential of �0.211 V vs. Ag/AgCl ( 0.4 V vs. RHE) with
chopped i rradiation every 30 s.

2.5. P hotocatalytic measurements

A 365 nm LED l amp (PLS-LED100C, PerfectLight, China) equip-
ped with a l < 400 nm filter ( Xujiang Electromechanical Plant,
Nanjing, China) was used as the light source. For the tests in a batch
reactor, the as-prepared Au/TiO2 immobilized GDL was placed onto
the t op of t he l iquid surface f or t he t riphase system, and t he as-
prepared Au/TiO2 i mmobilized quartz plate was placed i nto t he
liquid phase f or t he diphase system. Before l ight i rradiation, t he
reactor was placed in the dark for 30 min to establish an adsorption
equilibrium. The photocatalytic aerobic oxidation reaction timewas
120 min, d uring which a pproximately 0 .5 mL s olution was
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withdrawnwith a pipette at every 20 min intervals. For the test in a
flow reactor, a quartz beaker containing 10 mL BPA solution and a
homemade fl ow c ell was u sed a s t he p hoto-reactor. T he a s-
prepared A u/TiO2 i mmobilized G DL was fi xed b etween t he
aluminum alloy bracket and the serpentine l iquid flow path with
the catalyst l ayer on t he side close t o the l iquid. At i ntervals, t he
outlet s olution was c ollected f or f urther t esting. Afterward, t he
concentration of BPA was detected by the i ntensity of the charac-
teristic absorption peak at 276 nm. Moreover, a calibration curve
(Fig. S1) was prepared by the samemethod in 10, 20, 30, 40, 50, and
60 mg/L of pre-defined BPA stock solutions. The degradation per-
formance of BPS and BPAF in the triphase photocatalytic system for
BPS and BPAF were tested by the same method.

3. Results and discussion

The c oncept i s s chematically s hown i n F ig. 1a. The t riphase
system was constructed by placing Au/TiO2 immobilized GDL onto
the top of the BPA solution phase. In this way, oxygen in the air can
enter t he gas-liquid-solid t riphase i nterface t hrough t he porous
GDL and then reacts with photo-excited carriers on Au/TiO2 for ROS
generation and BPA oxidation. The cross-sectional scanning elec-
tronmicroscope (SEM) image in Fig.1b illustrated the configuration
of the immobilized Au/TiO2 on GDL. The thickness of photocatalyst
Au/TiO2 was e stimated t o be 1 .0 ± 0 .2 m m f rom t he e nergy-
dispersive X-ray spectroscopy mapping result of Ti and C elements
in the selected region (Fig. 1c). The enlarged SEM i mage i n Fig. 1d
shows the top-view morphology of carbon nanoparticles on GDL,
which possesses a water contact angle ( CA) of 142� s howing hy-
drophobic property. After i mmobilization of the Au/TiO2 l ayer, the
water CA s harply dropped t o nearly 0� b ecause of t he s uper-
hydrophilic property of nanosized Au/TiO2 shown i n Fig. 1e. More
structure details of t he Au/TiO2 photocatalysts l ayer were f urther
investigated. As shown in the X-ray diffraction pattern (Fig. S2), the
Fig. 1. Structural characterization of the Au/TiO2-immobilized GDL. (a) Schematic i llustration
reaction i nterface. (b) Cross-sectional SEM i mage of Au/TiO2-immobilized GDL. (c) Correspond
GDL. (e) Top-view SEM i mage of i mmobilized Au/TiO2 l ayer. I nserts i n (d) and (e) show pho
element maps for Ti, O, and Au. EDS, energy-dispersive X-ray spectroscopy; GDL, gas diffusio
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photocatalysts used i n our study were composed of anatase and
rutile TiO2. Only a faint diffraction peak of Auwas observed at about
38�, probably because of the l ow Au content [23]. The relative i n-
tensity of anatase and rutile phases was estimated to be 4/1, which
was essentially equal t o that f ound f or t he pristine TiO2 support,
thus l eading t o t he conclusion t hat t he structure of TiO2 did not
undergo significant changes t hroughout t he synthetic processes.
From TEM images (Fig. S3), high-angle annular dark-field scanning
TEM ( HAADF-STEM) i mage ( Fig. 1f), and energy-dispersive X-ray
spectroscopy element mapping ( Fig. 1g), t he size of i solated TiO2
particles was about 30 nm, and the size of Au particles was around
5e10 nm. The s ize distribution of Au nanoparticles i s s hown i n
Fig. S4. The l attice spacing of 2.36 Å and 3.52 Å supports the (111)
planes of Au and t he ( 101) planes of anatase TiO2, r espectively.
Diffuse reflection spectra of both pristine TiO2 and Au/TiO2 nano-
particles displayed i n Fig. S5 revealed a strong l ight absorption i n
the UV light region. Hence, a 365 nm light source (Fig. S6) was used
to evaluate photocatalytic BPA degradation efficiency. Moreover,
we f ound that Au/TiO2 can produce ROS with f ree radical capture
experiments (Fig. S7).

First of all, carbon-based GDL and polytetrafluoroethylene GDL
have similar catalytic performance (Fig. S8), indicating that the GDL
substrate has little effect on photocatalytic performance. As shown
in Fig. 2a, a degradation percentage of more than 60% was achieved
over Au/TiO2-based on t he t riphase s ystem within 120 min UV
irradiation at 40 mW/cm2. While for a diphase system, where Au/
TiO2 was immobilized onto a quartz substrate immersed in the bulk
liquid phase, BPA was approximately not degraded under the same
conditions. Another diphase c ontrol s ystem was performed by
immersing Au/TiO2 l oaded GDL i nto t he water phase and got a
similar result ( Fig. S9). I t i s hypothesized t hat t he noticeable BPA
degradation efficiency difference between t riphase and diphase
systems i s mainly because o f t he i nterfacial o xygen diffusion-
controlled c harge s eparation a nd a erobic o xidation p rocesses.
of the triphase photocatalytic system and enlarged view of the gas-liquid-solid triphase
ing EDS mapping of Au/TiO2-immobilized GDL. (d) Top-view SEM i mage of carbon black
tographs of water droplets on each sample. (f) HAADF-STEM i mage of Au/TiO2. (g) EDS
n l ayer; SEM, scanning electron microscopy.



Fig. 2. ( a) Photocatalytic aerobic oxidation of BPA i n t he triphase system and diphase system under the i rradiation of UV l ight, l ight i ntensity ¼ 40 mW/cm2. (b) Photocurrent
density comparison between t riphase system and diphase system. ( c) BPA degradation performance at different oxygen concentrations. ( d) Schematic diagram of t wo phases
immersed i n the l iquid phase. (e) Modeled oxygen diffusion i n diphase system where the catalysts are immersed i n l iquid, oxygen consumption rate ¼ 5 mM/s. (f) Corresponding
oxygen concentration in the triphase system (data collected from (e)). (g) Schematic diagram of gas-liquid-solid triphase photocatalysis system. (h) Modeled oxygen diffusion in the
triphase system where t he catalysts are at t he gas-liquid boundary, oxygen consumption rate ¼ 5 mM/s. ( i) Corresponding oxygen concentration i n t he t riphase system ( data
collected f rom (h)). BPA, 2,2-bis(4-hydroxyphenyl)propane; UV, ultraviolet.
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Therefore, diffusion-dependent photocurrent t ests were first car-
ried out. As i llustrated i n Fig. 2b, both t he diphase and t riphase
systems s how negligible d ark c urrents. Negative p hotocurrent
occurred u nder i rradiation, i ndicating a p hoto-induced c harge
separation a nd o xygen r eduction process o ver Au/TiO2 photo-
cathode. F or t he d iphase s ystem, t he p hotocurrent i ntensity
dramatically r educed f rom about 18 mA/cm2 t o near-zero within
each 30 s chopped irradiation, indicating a severe oxygen diffusion-
limited process owing to the slow oxygen mass transfer process in
the l iquid phase. On t he c ontrary, t he t riphase s ystem kept a 
photocurrent intensity at about 35 mA/cm2 without obvious decay,
suggesting a non-diffusion l imited charge s eparation f or oxygen
photoactivation, which can be ascribed to the fast supply of oxygen
molecules f rom the gas phase. Furthermore, by using gas sources
with different O2/Ar volume r atios, we f ound t hat t he t riphase
system exhibited good tolerance to the gas-phase oxygen concen-
tration f or photocatalytic BPA oxidation and t he r emoval of TOC
(Figs. 2c and S10). Even f or an oxygen concentration as l ow as
4

0.45 mM (1% volume fraction), the triphase system can maintain a
BPA degradation percentage of more than 30%.

To analyze the influence of interfacial oxygen mass transfer and
consumption on the l ocal oxygen concentration of photocatalysts
during photocatalysis, the local concentrations of O2 in triphase and
diphase s ystems were modeled i n COMSOL 5.4 [ 24,25]. Three-
dimensional geometric models ( 500 mm � 500 mm � 1000 mm)
were built f or the two systems (Fig. S11). For the diphase system,
the model was composed of a photocatalysts layer with a thickness
of 1 mm sandwiched i n the middle of the water phase (schemati-
cally shown i n Fig. 2d). For the triphase system, the same photo-
catalysts l ayer was sandwiched between t he GDL and t he water
phase (schematically shown in Fig. 2g). A porous domain displayed
in Fig. S12 with Bosanquet effective diffusivity was used for the GDL
to c alculate i ts e ffective diffusivity [ 26], which diminishes t he
effective gas diffusivity due to Knudsen diffusivity. An initial oxygen
concentration of 0.26mMwas set for both systems according to the
saturated o xygen s olubility i n t he water p hase. T he o xygen
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consumption rate region from 0 to 10 mM/s was estimated by the
oxygen consumption rate f or photodegradation of BPA i n t he t ri-
phase system (about 5 mM/s). As the simulated results are shown
in Fig. 2e and f, the local oxygen concentration of the photocatalysts
layer i n the diphase system dramatically decreases as the oxygen
consumption rate i ncreases. On the contrary, the triphase system
remains a high oxygen concentration i n the l ocal area of the pho-
tocatalysts l ayer, suggesting t hat t he oxygen supply t hrough t he
GDL i s s ufficient t o meet t he demand f or oxygen c onsumption
during the photocatalytic aerobic oxidation of BPA even i n diluted
conditions (Fig. 2h and i ).

The e ffect o f t he i nitial c oncentration o f B PA was f urther
investigated and displayed i n Fig. 3a. Au/TiO2 showed 84%, 78%,
76%, 69%, and 64% degradation of BPA with 20, 30, 40, 50, and
60 mg/L i nitial c oncentration, r espectively. T his p henomenon
revealed that the catalytic efficiency of the catalyst was decreased
with i ncreasing t he i nitial concentration of BPA as a result of t he
shading effect for light [27]. The pseudo-first-order kinetic equation
was used to describe the kinetics of the photocatalytic degradation
of BPA. The degradation r ate constants can be calculated by t he
following formula:

�ln
C
C0

¼ kt

where k and t are the rate constant (min�1) and reaction time (min),
C and C0 are BPA concentration at a specific moment and the initial
concentration of BPA, respectively. As t he i nitial concentration of
Fig. 3. ( a) Photocatalytic aerobic oxidation for BPA degradation with different i nitial concen
degradation activity under UV i rradiation with different l ight i ntensities. (d) The pseudo-fi
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BPA was i ncreased, the rate constant was decreased (Fig. 2b) and
found t o be 0.0084 min�1 f  or an i nitial concentration of 60 mg/
L ( Table S 1). F urthermore, t he degradation o f BPA a ccelerated
significantly with t he i ncrease of l ight i ntensity. When t he l ight
intensity was i ncreased f rom 5 mW/cm2 t o 200 mW/cm2, t he
degradation percentage was i ncreased f rom 20% t o 85% ( Fig. 3c),
and the rate constant was also nearly increased tenfold from 0.0018
min�1 t  o 0.017 min�               1 (  Fig. 3d and Table S2). It is worth mentioning
that the rate of photocatalytic aerobic oxidation f or BPA degrada-
tion reached 0.425 mg/L/min, which i s much higher than that re-
ported i n most l iterature under the same conditions [28e30].

For previous l aboratory research on the photooxidation of pol-
lutants, the stability evaluation of photocatalysts often requires the
recycling of the photocatalytic nanomaterials from thewater phase,
which i s cumbersome and difficult to achieve i n practical applica-
tions. T he c onstruction o f a c ontinuous flowing photocatalytic
system has t he advantages of high operational s afety, high pro-
duction e fficiency, a nd s imple p ost-reaction processing a nd i s
especially suitable f or potential l arge-scale i ndustrial applications
[31]. Consequently, t he s tability t est of t he t riphase s ystem was
carried o ut i n a h omemade fl ow r eactor. T he fl ow r eactor
comprised of three components: aluminum alloy back frame with
square t hrough c hannels, s erpentine water flow path, Au/TiO2

immobilized GDL, and quartz window ( Figs. 4a, b, and S13). The
water flow rate was controlled by a peristaltic pump. Quartz win-
dow ensures t hat t he UV l ight passes t hrough t he water l ayer t o
reach the surface of the photocatalysts. As shown in Fig. 4c, BPA can
be degraded, and t he r eaction r ate c an be greatly i mproved by
trations, light i ntensity ¼ 40 mW/cm2. (b) The pseudo-first-order fitting of (a). (c) BPA
rst-order fitting of (c). BPA, 2,2-bis(4-hydroxyphenyl)propane; UV, ultraviolet.



Fig. 4. ( a) A photograph of t he homemade t riphase flow r eactor. ( b) Schematic i llustration of t he t riphase flow photocatalytic system. ( c) Time and UV i ntensity-dependent
photocatalytic aerobic oxidation f or BPA degradation based on the triphase flow reactor. UV, ultraviolet.
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increasing t he UV l ight i ntensity. As t he l ight i ntensity gradually
increased f rom 20 mW/cm2 t o 200 mW/cm2, t he degradation
percentage of BPA i ncreased f rom 10% to 60%. For better j ustifica-
tion and understanding of the changes that may occur on catalyst
structure, the SEM (Fig. S14) and XPS (Fig. S15) characterization of
the catalyst after 50-h stability test was also carried out, showing
that the structure andmorphology of the catalyst and the GDLwere
not damaged, which may be the reason for its stable performance.
The t riphase photocatalytic organic pollutant degradation system
also s hows e xcellent r emoval p erformance f or B PS a nd B PAF
(Fig. S16).

4. C onclusion

In s ummary, we have constructed a gas-liquid-solid t riphase
photocatalytic system based on Au/TiO2 nanoparticles t o accom-
plish efficient photocatalytic aerobic oxidation for BPA degradation.
This t riphase system realized t he rapid and continuous supply of
reactant oxygen, thus promoting the charge separation and oxygen
activation processes over photocatalysts f or t he effective photo-
catalytic a erobic oxidation of BPA. The i nterfacial oxygen mass
transfer process during t he r eaction was analyzed t hrough finite
element simulation and diffusion-dependent photocurrent, which
may become reliable guides f or the research on the mass transfer
issue for aerobic oxidation reactions. Furthermore, investigation on
long-time operation s tability f or a flow t riphase photocatalytic
reactor demonstrates the bright prospects of this triphase system
for the potential l arge-scale photocatalytic applications.
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