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Nanoscale Fourier t ransform i nfrared s pectroscopy ( nano-FTIR) based on s canning probe microscopy

enables the i dentification of the chemical composition and structure of surface species with a high spatial

resolution ( ∼10 nm), which i s crucial f or exploring catalytic r eaction processes, cellular processes, virus

detection, etc. However, the characterization of a single molecule with nano-FTIR i s still challenging due

to t he weak coupling between t he molecule and i nfrared l ight due t o a l arge size mismatch. Here, we

propose a novel s tructure ( monolayer α-MoO3/air nanogap/Au) t o excite anisotropic acoustic phonon

polaritons (APhPs) with ultra-high field confinement ( mode volume, VAPhPs ∼ 10−11V0) and electromagnetic

energy enhancement ( >107) , which l argely enhance the i nteraction of single molecules with i nfrared l ight.

In addition, t he anisotropic APhP-assisted nano-FTIR can detect s ingle molecular dipoles i n directions

both along and perpendicular to the probe axis, while pristine nano-FTIR mainly detects molecular dipoles

along the probe axis. The proposed structure provides a way to detect a single molecule, which will i mpact

the fields of biology, chemistry, energy, and environment through fundamental research and applications.

Introduction

The a bility t o c haracterize t he c hemical c omposition a nd
structure o  f a  s  ingle m  olecule i  s e  ssential i  n D  NA
sequencing,1,2 c  ellular p  rocesses,3,4 m  olecular d  ynamic
process,5,6 a nd v irus detection.7 F ourier t ransform i nfrared
spectroscopy (FTIR) can realize fast and non-destructive identi-
fication of molecular f ingerprint i nformation a nd i s widely
used i n b  iomolecular d  etection,8,9 b  iological p  rocesses
monitoring10,11 and pollutant detection.12 More i mportantly,
the d evelopment o f n ano-FTIR b ased o n s canning p robe
microscopy ( SPM) s uch a s s cattering s canning n ear-field
optical microscopy ( s-SNOM), p hotothermal-induced r eso-

nance microscopy, peak force i nfrared microscopy, and photo-
induced f orce microscopy c an break t he o ptical diffraction
limit ( >4 μ m f or FTIR) a nd provide high s patial r esolution
(∼10 nm) f or single molecule detection.13 For example, nano-
FTIR has been r ecently used t o detect t he f ingerprint spectra
of polydimethylsiloxane ( PDMS) nanoparticles14 and protein
particles.15 However, t he i nfrared spectra of a single molecule
is still too weak to be detected by nano-FTIR, which i s l imited
by weak light–matter interaction between infrared light ( whose
wavelength i s ∼10 μm s cale) a nd a s ingle molecule ( whose
wavelength is always <10 nm) due to their large size mismatch.
Although t he s canning probe has a l ightning r od e ffect t o
enhance t he strength of t he electromagnetic f ield, nano-FTIR
working in the tapping mode has an amplitude modulation in
the order of t ens of nanometers,16–18 making i t difficult t o
meet the electromagnetic energy enhancement ( >105) required
for s ingle molecule detection.19 Moreover, t he dipole of t he
s-SNOM tip is mainly along the tip axis (z-direction),20,21 and it
would r esult i n l ow dipole–dipole c oupling e fficiency t o t he
molecular dipole along the substrate plane (x–y-direction).

Highly confined t wo-dimensional ( 2D) polaritons, such as
graphene p  lasmons,22,23 a  nd h  -BN p  honon p  olaritons
(PhPs),24–27 can compress the light wavelength from the micro-
scale t o nanoscale,28 a nd c an l argely e nhance t he i nfrared
absorption of molecules.29–31 For example, graphene plasmons
have been used t o enhance t he i nfrared spectra of 8 nm PEO
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film,32 0.8 nm silk protein f ilm,19 t race SO2, NO2, N2O gas,33

etc. The hyperbolic property endows h-BN PhPs with higher
wavelength c ompression and f ield e nhancement, which c an
detect a 3 nm t hick 4,4′-bis(N-carbazolyl)-1,1′-biphenyl ( CBP)
film.31 Hyperbolic α-MoO3 with i n-plane anisotropic PhPs, i s
expected t o have even higher electromagnetic f ield enhance-
ment t han h-BN PhPs, especially f or t he monolayer α-MoO3

which t heoretically has t he highest wavelength c ompression
compared t o multilayer α-MoO3.

34–41 I n addition, a resonance
structure design can further enhance the electromagnetic field
of t he polaritons, s uch a s acoustic graphene plasmons and
acoustic h-BN PhPs formed in nanocavities.42–45

Here, we constructed a monolayer α-MoO3/0.6 nm gap/Au
heterostructure t o excite highly confined anisotropic APhPs i n
α-MoO3 t o detect a s ingle molecule by using s -SNOM. The
APhPs have extremely high electromagnetic energy enhance-
ment ( >107), which can greatly enhance the l ight–matter i nter-
action. Moreover, t he APhP-enhanced nano-FTIR c an detect
molecules with the polarization direction perpendicular to the
tip axis ( in t he x–y plane), while t he pristine nano-FTIR only
detects molecular polarization along t he t ip axis. I n addition,
the i n-plane anisotropy coupling efficiency of the APhPs to the
molecule dipole with different polarization ( varied nearly 20
fold) c an be used a s a probe f or r ecognizing t he i n-plane
dipole orientation of a s ingle molecule. Our combination of
s-SNOM a nd α -MoO3 APhPs p rovides a t heoretical demon-
stration for the efficient detection of a single molecule.

Results and discussion

The detection of a single molecule by using anisotropic APhPs
in t he d esigned α -MoO3/air n anogap/Au h eterostructure i s
schematically s hown i n F ig. 1 a. s -SNOM i s u sed t o e xcite

hyperbolic P hPs i n t he monolayer α -MoO3 a nd d etect t he
nano-FTIR s pectra of t he objective molecules. The r ed a nd
blue a rrows r epresent i ncident l ight a nd s cattered l ight,
respectively. A 0.6 nm gap between the monolayer α-MoO3 and
Au substrate i s designed to generate acoustic polaritons,43,45,46

and the objective molecule is placed in the gap for detection.
Firstly, we numerically s imulate t he e lectric f ield distri-

bution of t he APhPs i n t he α-MoO3/Au heterostructure using
the commercial software package COMSOL. In the simulation,
the t hickness o f t he α -MoO3 monolayer i s modeled a s
0.7 nm.47 A  ccording t o c ontinuum e lectrodynamics f or 2 D
phonon polaritons, t he monolayer material does not have sig-
nificant z-axis polarizability,48,49 t hus we t ake a constant εz =
6.5 f or t he z-axis permittivity of t he α-MoO3 monolayer.35 The
in-plane anisotropic permittivity values εx and εy are shown i n
Fig. S1,† which have t hree Reststrahlen bands ( RB1, RB2, and
RB3).

50 We mainly f ocus on RB2 ( 821.4–963 cm−1, εx < 0, εy >
0), while our research results can also apply to RB1. In RB2, the
freestanding α-MoO3 monolayer phonon polaritons have s ig-
nificant optical anisotropy and are mainly propagated i n t he
x-direction ( Fig. 1 b). Therefore, we use t he c ross-section of
APhPs propagating along t he x-direction t o analyze t he nor-
malized electric f ield distribution | Re(Ez)/Re(Ez0)|as shown i n
Fig. 1c. For comparison, the same cross section of PhPs propa-
gating i n t he f reestanding α -MoO3 monolayer i s s hown i n
Fig. S2.† The APhPs exhibit a strong capacitor-like ( squeezed)
electric f ield i n t he gap ( d = 0.6 nm) between t he α-MoO3 and
the Au substrate, while the electric field of PhPs exhibits a ver-
tical symmetry on both sides. Due t o t he strength of t he f ield
squeezing, the maximum nearfield enhancement of the APhPs
is about 4-fold greater t han t hat of t he PhPs. Importantly, t he
electromagnetic energy enhancement of APhPs can reach 107, 
which i s strong enough to achieve single molecule l evel detec-
tion. Notably, the APhP wavelength (λAPhPs = 10.2 nm, λ0/λAPhPs

Fig. 1 (  a) Schematic diagram of molecular sensing using nano-FTIR with electromagnetic field enhancement of APhPs i n the monolayer α-MoO3/
air nanogap/Au heterostructure. The single molecule i s l ocated i n the air gap between the α-MoO3 monolayer and the Au substrate. ( b) Normalized
electric field distribution | Re(Ez)/Re(Ez0)| of freestanding α-MoO3 monolayer PhPs at ω = 860 cm−1. I n RB2, PhPs propagate i n the x-direction. Scale
bar: 50 nm. (c) Normalized electric field |Re(Ez)/Re(Ez, PhPs)| distribution of APhPs i n the monolayer α-MoO3/0.6 nm air gap/Au heterostructure at ω =
880 cm−1. The APhP wavelength i s 10.2 nm. Scale bar: 5 nm. ( d) Dispersion curves of t he APhPs i n monolayer α-MoO3/0.6 nm air gap/Au ( green
curve), PhPs on a freestanding monolayer α-MoO3 (blue curve), APhPs on a 5 nm-thick α-MoO3/0.6 nm air gap/Au (red curve), and PhPs on a 5 nm-
thick freestanding α-MoO3 l ayer (black curve). Dashed black l ines mark the LO (longitudinal optical phonon) and TO ( transverse optical phonon) fre-
quency of the α-MoO3, respectively.
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= 1114) i s also shorter than t hat of t he PhPs ( λPhPs = 18.8 nm,
λ0/λPhPs = 604), which has a l arger l ight wavelength confine-
ment t han t he corresponding graphene46 and h-BN4            5 a  coustic
polariton modes.

The dispersion r elationship o f APhPs i n t he α -MoO3/air
nanogap/Au heterostructure i s calculated via both t he Fresnel
reflection coefficient r p(q, ω) method ( Fig. S3†) and t he f inite
element method (FEM). The data obtained from these two cal-
culation methods are i n e xcellent agreement ( Fig. S4†). For
comparison, we also calculated t he dispersion of PhPs i n t he
freestanding α-MoO3 monolayer, a 5 nm t hick α-MoO3 l ayer,
and t he α -MoO3 ( 5 n m t hick)/0.6 n m a ir g ap/Au h etero-
structure, respectively ( Fig. 1d). As shown, t he wavevectors f or
the APhP modes ( qAPhPs) a re l arger t han t hose of t he PhPs
(qPhPs) at each f requency, and t he monolayer α-MoO3 APhPs
have the largest wavevectors (Fig. 1d).

For t he ultra-high wavelength c ompression of APhPs ( λ0/
λAPhPs ∼ 103) i n t his monolayer α-MoO3/nanogap/Au hetero-
structure, we consider t he nonlocal effect.51,52 There are t wo
nonlocal effects: t he nonlocal r esponse of 2D materials and
the nonlocal r esponse of t he Au substrate. For 2D phononic
materials, only when the qAPhPs is comparable to the inverse of
the out-of-plane atomic l ayer spacing ( or t hat of t he i n-plane
lattice distance), the effective permittivity needs to be modified
by t he nonlocal effect.50 I n t his c ase, s ince 1/a > 104q0 and
qAPhPs ∼ 103q0, nonlocal effects i n t he monolayer α-MoO3 can
be i gnored i n our calculations. Then we consider the nonlocal
Au i n o ur c alculations b y r eplacing A u with a c omposite
material, c omprising a t hin dielectric l ayer on t op of l ocal
Au.53 I  n Fig. 2a, we compared t he APhP dispersion curves of
the same monolayer α-MoO3/air nanogap/Au heterostructures
using l ocal and nonlocal Au i n the calculation, respectively. As
shown, the solid dots ( nonlocal Au) can repeat t he solid curve
(local Au) well, i mplying t he nonlocal effect of Au can also be
ignored. Our calculations demonstrate t hat even when d i s as

small as 0.3 nm ( i.e., 1 atom t hick), t his nonlocal effect can
also be ignored in our α-MoO3/Au heterostructure.

To o ptimize t he e lectromagnetic f ield e nhancement, we
studied t he e ffects o f a ir g ap d istances i n t he monolayer
α-MoO3/air nanogap/Au heterostructure. In Fig. 2b, the plot of
qAPhPs as a f unction of d f or a f ixed f requency ω = 880 cm−1

through theoretical calculations of rp ( red solid curve) and the
FEM ( blue triangle), which are consistent. As d i ncreases from
0.3 nm ( i.e., one atom thick) to 4 nm, qAPhPs rapidly decreases
because the coupling between the polaritons i n the monolayer
α-MoO3 and t he Au substrate becomes weaker as t he gap dis-
tance d i ncreases, as displayed i n the i nset of Fig. 2b. When d
is f urther i ncreased t o 8 nm ( purple dot), q APhPs becomes
nearly t he same as qPhPs ( black dashed curve), i ndicating t hat
the c oupling b etween t he p olariton a nd t he A u s ubstrate
vanishes. Thus, t he s maller t he gap distance d between t he
monolayer α-MoO3 and t he Au substrate ( valid f or l ocal Au),
the higher the confinement.

When d i s 0.3 nm, t he APhP wavelength, i .e., λAPhPs = λ0/
1475 ( for λ0 = 11.36 μm) can be compressed more t han 103-
fold. This corresponds t o a mode volume of VAPhPs = 18 nm3

(VAPhPs = λAPhPs
2 × d ) and a mode volume r atio of VAPhPs/V0 ≈

1.2 × 10−11 w   here V0 = λ0
3. The group velocities54 of APhP are

calculated f rom t he dispersion c urves using Vg = ∂ ω/∂q, a s
shown i n Fig. 2c. The Vg of APhP i n t he α-MoO3/0.6 nm air
gap/Au heterostructure c an r each∼c/105 ( c i s t he v elocity of
light i n f ree space), which i s much smaller t han t hat i n t he
α-MoO3 monolayer ( Vg ∼ c /38 000, black c urve). These ultra-
confined electromagnetic modes as well as t he l ow group vel-
ocity imply strong light–matter interaction, which is significant
for single molecule detection.

We chose t he α-MoO3/0.6 nm air gap/Au heterostructure t o
detect a single molecule using nano-FTIR because t he 0.6 nm
air gap can provide ultrahigh electromagnetic f ield enhance-
ment as stated above, and i s suitable t o hold a single mole-

Fig. 2 (  a) Dispersion curves of APhPs i n monolayer α-MoO3/air nanogap/Au with different gap distances, d = 2 nm ( green dots/curve), d = 1 nm
(blue dots/curve) and d = 0.6 nm ( red dots/curve), which are calculated by considering nonlocal/local Au. The black curve shows the dispersion of
PhPs on a f reestanding α-MoO3 monolayer. ( b) The wavevector of APhPs as a f unction of gap-distance dependent on monolayer α-MoO3/air
nanogap/Au. The red curve i s the i maginary part of the calculated Fresnel reflection coefficient, and the blue triangle i s obtained by FEM simulation.
The black dashed curve shows the PhP wavevector for a freestanding α-MoO3 monolayer. Inset: electric field distribution of APhPs with d = 1, 4, and
8 nm. Scale bar: 5 nm. ( c) Calculated group velocities of APhPs i n monolayer α-MoO3/air nanogap/Au with d = 2 nm ( green curve), d = 1 nm ( blue
curve), d = 0.6 nm ( red curve), and PhPs i n f reestanding α-MoO3 monolayer ( black solid curve). Black dashed curves i n ( a) and ( c) mark t he TO
phonon frequency of α-MoO3.
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cule. The nano-FTIR i s simplified as a vertical electric dipole
light s ource i n o ur model s ince t he t ip-scattered s ignal o f
nano-FTIR can be qualitatively approximated by simulating a
vertical e lectric f ield | Re(Ez)| below a dipole s ource placed
above the sample.17,21 First, we calculated the pristine spectra,
i.e., | Re(Ez)/Re(Ez, s ub)| as a f unction of t he f requency, of t he
monolayer α-MoO3/0.6 nm air gap/Au structure and monolayer
α-MoO3 nanoribbon/0.6 nm air gap/Au structures as shown i n

Fig. 3a. The α-MoO3 nanoribbons have a width of 12, 20, and
30 nm in the x-direction, and a length of 100 nm in the y-direc-
tion ( Fig. 3a, i nset). By c utting t he monolayer α-MoO3 i nto
nanoribbons i n t he heterostructure, t he APhP resonance peak
splits i nto f our p eaks ( marked b y M1–M4). T hey c an b e
assigned t o t he 1st, 2nd, 3rd, and 4th order of t he nanocavity
APhPs f rom t he electric f ield distributions of M1–M4 ( Fig. S5
and S 6, details i n t he ESI†). As t he α -MoO3 r ibbon width

Fig. 3 (  a) Normalized electric-field spectra |Re(Ez)/Re(Ez, sub)| of APhPs i n α-MoO3 nanoribbon/0.6 nm air gap/Au. There are three different α-MoO3

nanoribbon widths, i .e., 12 nm ( red curve), 20 nm ( blue curve), and 30 nm ( green curve). The ribbon l ength i s fixed to be 100 nm. M1–M4 represent
the multi-order modes of the APhP resonance peak. I nset: Top view of the α-MoO3 nanoribbon/air nanogap/Au structure. ( b) Normalized electric-
field spectra |Re(Ez)/Re(Ez, sub)| of APhPs coupling with a single molecule (red solid curve). The pristine electric-field spectrum of the APhPs i s shown
as the dashed red curve. The spectrum of the bare molecule signal i s amplified by 50 fold (blue solid curve).

Fig. 4 N  ormalized electric-field spectra | Re(Ez)/Re(Ez, sub)| of APhPs with the molecule ( red curves) when the angle between the molecular dipole
and the APhP polarization i s θ = 0° (a), θ = 45° ( b), θ = 90° ( c). The bare molecule signal spectrum i s displayed as a red dashed curve and the pristine
APhP spectrum i s displayed as the black curve i n ( a–c). I nset of ( a–c): Schematic diagram of the angle θ between the orientation of the molecular
dipole and the propagation direction of APhPs. ( d) The enhancement factor of APhPs to molecular signal EF as a function of θ, which i s normalized
by EF(90°).
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becomes s maller, t he e lectromagnetic f ield o f t he A PhPs
becomes s tronger, a nd t he c orresponding f requency b lue
shifts. T he n ormalized e lectric f ield s trength | Re(Ez)/Re(Ez,
sub)| maximum of 12 nm wide α-MoO3 nanoribbon APhPs i s
about 5 t imes l arger t han t hat o f t he α -MoO3 f ilm ( black
curve), a nd t he e lectromagnetic e nergy e nhancement c an
reach 108. We use it to detect a single molecule with the size of
5 × 5 × 0.6 nm. The molecule i s put i n t he 0.6 nm air gap,
where t he hot spot i s l ocated ( Fig. S7†). A molecular vibration
mode at 863 cm−1 i  s used as an example whose permittivity i s
plotted in Fig. S8.† The molecule spectrum (blue solid curve in
Fig. 3 b) i s t oo weak t o b e d irectly d istinguished, a nd we
enlarged i t by 50-fold f or v iewing. After combining with t he
APhPs, the molecular signal appears as an obvious Fano dip in
the broad APhP r esonance s pectrum, and t he e nhancement
can be calculated t o be about 45-fold. I n contrast, t he signal
enhancement o f t he s ame molecule monolayer v ia t he
α-MoO3/0.6 nm air gap/Au structure i s about 3-fold ( details i n
Fig. S9†). The Fano dip feature originates from the destructive
interference between t he molecular v ibration mode and t he
APhP resonance mode, and the APhPs are the strongly absorp-
tion a ctive modes, while t he weakly a bsorbing molecular
vibration that is coupled to APhPs is the passive (dark) mode.

At l ast, we take advantage of the anisotropic α-MoO3 APhPs
to i dentify t he i n-plane dipole orientations of a single mole-
cule. We set an i n-plane dipole and studied t he single mole-
cule detected by nano-FTIR a s a f unction o f t he a ngle ( θ)
between t he molecular dipole and t he α-MoO3 APhPs. Due t o
the weak coupling between nano-FTIR and the in-plane dipole,
we set the intensity of this in-plane dipole to be 200 times that
of t he single molecule used above. When θ changes f rom θ =
0° t o θ = 90° ( Fig. 4), t he dip f eature i n t he APhP r esonance
spectrum decreases until i t disappears. More APhP resonance
spectra ( θ = 15°, 30°, 60° and 75°) can be f ound i n Fig. S10.†
We calculated t he enhancement effect EF of APhPs on mole-
cular signals at different angles θ (Fig. 4d). We obtained mole-
cular resonance spectra f ollowing APhP enhancement by sub-
tracting the APhP resonance spectrum with the molecule from
the APhP r esonance spectrum without t he molecule. And t he
result i s then divided by the original signal of the molecule to
obtain t he enhancement f actor EF.32 The EF i s t he s mallest
when the molecular vibration dipole is completely perpendicu-
lar to the APhP propagation direction ( i.e., θ = 90°). The mole-
cular signal enhancement effect of θ = 0° is 20 times than that
of θ = 90°. Therefore, anisotropic APhPs can not only enhance
the single molecule signal, but also can be used as probes t o
identify t he i n-plane v ibrational d ipole o rientation o f t he
single molecule.

Conclusions

In summary, we designed a monolayer α-MoO3/0.6 nm gap/Au
heterostructure to excite highly confined anisotropic APhPs by
using s -SNOM. A PhPs h ave a u ltra-high mode v olume
(∼10−11V0) and ultra-slow group velocity (Vg ∼ c/105), which can

enhance the single molecule detection efficiency (∼45-fold). In
addition, due t o t he i n-plane optical anisotropy of APhPs, t he
coupling e fficiency between α -MoO3 APhPs a nd t he s ingle-
molecule dipole with different orientations has a huge differ-
ence of nearly 20 t imes, which can r ealize t he r ecognition of
a s ingle molecule i n i n-plane dipole orientation. Therefore,
combining t he APhPs i n t he α-MoO3/Au heterostructure and
s-SNOM has demonstrated significant application advantages
in the field of single molecular optical sensing, laying a theore-
tical foundation for future single molecule infrared fingerprint
detection.

Methods
Full wave simulations

This work i s based on the finite element method ( FEM) of the
simulation software COMSOL. We used a 2D boundary t rans-
mission model t o c alculate t he f ield distribution of APhPs/
PhPs i n Fig. 1 The l argest mesh s ize of t he α-MoO3 area i s
0.2 nm, f or which t he c alculations r eached proper c onver-
gence, while we used a 3D model with the scattering boundary
condition a s s hown i n Fig. 3 a nd 4 . The v ertically e lectric
dipole s ource i s 5 n m a bove t he α -MoO3 monolayer. T he
largest mesh size for the α-MoO3 area is 1 nm. The value of the
z component of the electric field |Re(Ez)| i s taken from 0.3 nm
above t he α -MoO3. | Re(Ez)/Re(Ez, s ub)| i ndicates t he e lectric
field e nhancement, where | Re(Ez, s ub)| i s t he e lectric f ield
above the Au substrate. The electric field distribution interface
is taken from 0.1 nm below the α-MoO3.

Molecule permittivity model

In our model, t he v ibrational mode of a given molecule i s
modeled by t he f ollowing Lorentz oscillator: ε (ω) = ε ∞ + f ×
(ωn

2 − ω2 − i ωΓ)−1, where f = 15.8 cm−2 r  epresents t he mole-
cular signal oscillation intensity, ω i s the i nfrared i ncident fre-
quency, ε∞ = 1 represents the constant dielectric background,
ωn = 863 cm−1 represents the molecular vibrational frequency,
and Γ = 1.3 cm−1 represents the molecular damping constant.
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