

1 **Giant All-Optical Modulation of Second-Harmonic Generation**

2 **Mediated by Dark Excitons**

3

4 Yadong Wang[#], Susobhan Das[#], Fadil Iyikanat[#], Yunyun Dai, Shisheng Li, Xiangdong
5 Guo, Xiaoxia Yang, Jinluo Cheng, Xuerong Hu, Masood Ghotbi, Fangwei Ye, Harri
6 Lipsanen, Shiwei Wu, Tawfique Hasan, Xuetao Gan, Kaihui Liu, Dong Sun, Qing Dai,
7 F. Javier García de Abajo*, Jianlin Zhao*, and Zhipei Sun*

8

9 **Corresponding Authors**

10 **F. Javier García de Abajo** - *ICFO-Institut de Ciencies Fotoniques, The Barcelona*
11 *Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain; ICREA-*
12 *Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010*
13 *Barcelona, Spain; Email: javier.garciadeabajo@nanophotonics.es*

14 **Jianlin Zhao** - *MOE Key Laboratory of Material Physics and Chemistry under*
15 *Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information*
16 *Technology, School of Physical Science and Technology, Northwestern Polytechnical*
17 *University, Xi'an 710129, China; Email: jlzhao@nwpu.edu.cn*

18 **Zhipei Sun** - *Department of Electronics and Nanoengineering, Aalto University, Espoo*
19 *02150, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto*
20 *University, Espoo 02150, Finland; [https://orcid.org/0000-0002-9771-](https://orcid.org/0000-0002-9771-5293)*
21 *Email: zhipei.sun@aalto.fi*

22

23 **Authors**

24 **Yadong Wang** - *MOE Key Laboratory of Material Physics and Chemistry under*
25 *Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information*
26 *Technology, School of Physical Science and Technology, Northwestern Polytechnical*
27 *University, Xi'an 710129, China; Department of Electronics and Nanoengineering,*
28 *Aalto University, Espoo 02150, Finland; <https://orcid.org/0000-0001-8603-3468>*

29 **Susobhan Das** - *Department of Electronics and Nanoengineering, Aalto University,
30 Espoo 02150, Finland*

31 **Fadil Iyikanat** - *ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of
32 Science and Technology, 08860 Castelldefels (Barcelona), Spain*

33 **Yunyun Dai** - *Department of Electronics and Nanoengineering, Aalto University,
34 Espoo 02150, Finland; <https://orcid.org/0000-0002-1186-1864>*

35 **Shisheng Li** - *International Center for Young Scientists, National Institute for
36 Materials Science, Tsukuba 305-0044, Japan*

37 **Xiangdong Guo** - *CAS Key Laboratory of Nanophotonic Materials and Devices, CAS
38 Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center
39 for Excellence in Nanoscience, National Center for Nanoscience and Technology,
40 Beijing 100190, China*

41 **Xiaoxia Yang** - *CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key
42 Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for
43 Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing
44 100190, China*

45 **Jinluo Cheng** - *Changchun Institute of Optics, Fine Mechanics and Physics, Chinese
46 Academy of Sciences, Changchun, Jilin 130033, China; <https://orcid.org/0000-0003-4875-9342>*

48 **Xuerong Hu** - *Department of Electronics and Nanoengineering, Aalto University,
49 Espoo 02150, Finland; International Cooperation Base of Photoelectric Technology
50 and Functional Materials, and Institute of Photonics and Photon-Technology,
51 Northwest University, Xi'an 710069, China*

52 **Masood Ghotbi** - *Department of Physics, University of Kurdistan, Pasdaran St.,
53 Sanandaj 66177-15177, Iran*

54 **Fangwei Ye** - *School of Physics and Astronomy, Shanghai Jiao Tong University,
55 Shanghai 200240, China*

56 **Harri Lipsanen** - *Department of Electronics and Nanoengineering, Aalto University,
57 Espoo 02150, Finland; <https://orcid.org/0000-0003-2487-4645>*

58 **Shiwei Wu** - *State Key Laboratory of Surface Physics, Key Laboratory of Micro and*
59 *Nano Photonic Structures (MOE), and Department of Physics, Fudan University,*
60 *Shanghai 200433, China; <https://orcid.org/0000-0001-9838-9066>*

61 **Tawfiq Hasan** - *Cambridge Graphene Centre, University of Cambridge, Cambridge*
62 *CB3 0FA, United Kingdom; <https://orcid.org/0000-0002-6250-7582>*

63 **Xuetao Gan** - *MOE Key Laboratory of Material Physics and Chemistry under*
64 *Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information*
65 *Technology, School of Physical Science and Technology, Northwestern Polytechnical*
66 *University, Xi'an 710129, China; <https://orcid.org/0000-0003-2469-5807>*

67 **Kaihui Liu** - *State Key Laboratory for Mesoscopic Physics and School of Physics,*
68 *Peking University, Beijing 100871, China*

69 **Dong Sun** - *International Center for Quantum Materials, School of Physics, Peking*
70 *University, Beijing 100871, China; <https://orcid.org/0000-0002-0898-4548>*

71 **Qing Dai** - *CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key*
72 *Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for*
73 *Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing*
74 *100190, China; <https://orcid.org/0000-0002-1750-0867>*

75

76

77 **Abstract:**

78 All-optical control of nonlinear photonic processes in nanomaterials is of significant
79 interest from a fundamental viewpoint and with regard to applications ranging from
80 ultrafast data processing to spectroscopy and quantum technology. However, these
81 applications rely on a high degree of control over the nonlinear response, which still
82 remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast
83 modulation of second-harmonic generation (SHG) in monolayer transition-metal
84 dichalcogenides mediated by the modified excitonic oscillation strength produced upon
85 optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to
86 a factor of ~ 386 at room temperature, 2 orders of magnitude larger than the current
87 state-of-the-art all-optical modulation results. The amplitude and sign of the observed

88 SHG modulation can be adjusted over a broad spectral range spanning a few
89 electronvolts with ultrafast response down to the sub-picosecond scale via different
90 carrier dynamics. Our results not only introduce an efficient method to study intriguing
91 exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate
92 all-optical nonlinear photonics.

93

94 **KEYWORDS:** Second-Harmonic Generation, Dark Excitons, Bright Excitons,
95 Transition Metal Dichalcogenides Monolayers, Ultrafast Optical Modulation,
96 Optically-Modulated Excitonic Strength

97

98

99 **Introduction**

100 Second-harmonic generation (SHG), a nonlinear optical process originating in the
101 second-order response of noncentrosymmetric materials, is arguably the most
102 commonly used nonlinear optical effect.⁽¹⁾ An efficient control of SHG is vital for
103 various important applications that include optical data processing, spectroscopy, and
104 quantum photonics. In previous works, all-optical control of SHG⁽²⁾ has been
105 demonstrated in semiconductors⁽³⁾ as well as in metallic⁽⁴⁾ and hybrid
106 structures,^(5–7) primarily relying on optically induced electric fields and hot electrons.
107 However, the reported modulation of SHG in noncentrosymmetric materials is
108 generally very weak (typically with enhancement factors $\lesssim 4$). This lack of efficient
109 all-optical modulation strategies represents a major bottleneck toward the development
110 of emerging and future applications, such as quantum photonics and on-chip nonlinear
111 devices.

112 In recent years, two-dimensional (2D) transition metal dichalcogenides (TMDs) have
113 emerged as a powerful platform for applications in photonics and
114 optoelectronics,⁽⁸⁾ including nonlinear optics.⁽⁹⁾ Specifically, excitons introduce strong
115 resonances in the optical response of TMDs, which dominate their linear and nonlinear
116 optical properties aided by the extreme quantum confinement and reduced screening in
117 these materials.^(9–12) As a consequence, significant research efforts have been devoted
118 to investigate and exploit the enhancement of the nonlinear optical response in
119 TMDs,^(13–21) which is fascinating from both fundamental and applied perspectives.
120 Interestingly, excitonic Rydberg states exhibit general characteristics of hydrogen-like
121 atoms, possessing a series of discrete optically accessible (bright; 1s, 2s, ...) and
122 optically forbidden (dark; 2p, 3p, ...) states, as determined by optical selection
123 rules.⁽²²⁾ Through strong resonant enhancement of bright excitons, SHG can be actively
124 tuned using several methods, such as electrical and chemical
125 doping.^(19–21,23–27) However, the influence of dark exciton states on nonlinear optics has
126 remained largely unexploited.^(22,28)

127 Here, we demonstrate giant all-optical modulation of SHG within a broad spectral range
128 in monolayer TMDs at ultrafast speed (down to ~ 500 fs). Our results confirm that SHG

129 modulation is strongly related to dark excitonic states, with the SHG modulation being
130 enhanced by the creation of dark excitons and suppressed by bright excitons. The
131 measured enhancement of SHG reaches a factor as large as ~ 386 . By combining bright-
132 and dark-exciton resonances, we achieve a dramatic modulation of the SHG amplitude,
133 sign, and response time over a wide spectral range. We explain our results by
134 performing first-principles calculations supporting the leading role of optically pumped
135 dark excitons. Our study emphasizes time-resolved SHG spectroscopy as an efficient
136 way to investigate high-order excitonic states and their dynamics in 2D materials and
137 their heterostructures. Additionally, our demonstration of a giant enhancement in the
138 nonlinear optical processes of TMD materials holds great potential for applications in
139 all-optical devices.

140

141 **Results and Discussion**

142 Figure 1a shows the schematic of our characterization setup, by which we study the
143 SHG produced by seed light pulses as a function of delay time $\Delta\tau$ with respect to control
144 light pulses in monolayer MoS₂. All experiments are performed at ambient conditions
145 (details in Methods and Supporting Information, SI). We present a typical SHG
146 modulation result in Figure 1b. A readily available control light of photon energy
147 $\hbar\omega_c \approx 3.1$ eV ($\lambda_c \approx 400$ nm wavelength) above the C-exciton peak is chosen. The SHG
148 signal at $\hbar\omega_{\text{SHG}} \approx 2.36$ eV ($\lambda_{\text{SHG}} \approx 525$ nm) generated by the seed light at $\hbar\omega_s \approx 1.18$ eV
149 ($\lambda_s \approx 1050$ nm) is immediately enhanced by the control light with a single-exponential
150 rising time constant ($\tau_0 \approx 600$ fs, orange fitted line in Figure 1b). After $\Delta\tau \approx 1.3$ ps, the
151 SHG intensity starts to decay, exhibiting two exponential time constants ($\tau_1 \approx 4.4$ ps
152 and $\tau_2 \approx 33$ ps, red fitted curve in Figure 1b). The dynamics at different seed/control
153 light powers (see Figure S3 in the SI) are similar to those shown in Figure 1b. The
154 measured SHG spectra at $\Delta\tau = -1$ and 1.3 ps are shown in Figure 1c, which reveals a
155 strong SHG enhancement produced by the control light.

156 Figure 1d shows the enhancement factor γ at $\Delta\tau = 1.3$ ps, where a maximum SHG signal
157 is achieved, as a function of the control and seed light powers. We define the
158 enhancement factor as $\gamma = P_w/P_{wo}$, where P_w and P_{wo} are the second harmonic (SH)

159 powers measured with and without the control light, respectively. We find that γ is
160 highly dependent on the incident light power. Figure 1e represents γ as a function of
161 control light power when the average seed light power (peak intensity) is $\sim 2 \mu\text{W}$ (~ 21.9
162 GW/cm^2). We find that γ increases linearly with the control light power (P_c) and is
163 slightly saturated for $P_c > 0.4 \mu\text{W}$ (corresponding to a light intensity of $> 3.43 \text{ GW/cm}^2$,
164 equivalent to an electron–hole (e - h) pair density of $> 5.7 \times 10^{14} \text{ cm}^{-2}$ when considering
165 the measured absorption of $\sim 7.1\%$ at $\sim 3.1 \text{ eV}$). In Figure 1e, we find that γ reaches a
166 maximum value of 386 (with a corresponding enhancement of ~ 19 times in second-
167 order nonlinear optical susceptibility), which is ~ 2 orders of magnitude larger than
168 previously reported all-optical SHG enhancement results.^(6,13–16,19–21,29) We remark that
169 the control light intensity is only $\sim 4.29 \text{ GW/cm}^2$, that is, ~ 5 times less than the seed
170 light intensity of $\sim 21.9 \text{ GW/cm}^2$. This is notable as the control light power is typically
171 larger than the seed light power in the previously reported results.⁽³⁰⁾ Similar
172 enhancement phenomena (see Figure S3b in the SI) are observed when the control light
173 energy is changed to $\sim 1.55 \text{ eV}$ ($\lambda_c = 800 \text{ nm}$). The maximum achievable γ at this lower
174 photon energy of the control light is 75, that is, ~ 5 times smaller than the results
175 obtained with the 3.1 eV control light (Figure 1d). A higher incident control light power
176 is required at 1.55 eV because it involves two-photon excitations. We have reliably
177 repeated these results using different MoS₂ flakes at ambient conditions with no
178 observable change or damage. Larger γ is achieved with higher control power, as
179 indicated in Figures 1d and S3b, although this results in gradual sample damage during
180 the experiments.

181 Furthermore, we characterize the valley selection rule. By employing left-circularly
182 polarized ($\sigma-$) seed light at $\sim 1.18 \text{ eV}$, the SH spectra filtered with $\sigma-$ and $\sigma+$
183 polarizations show $\sim 96\%$ helicity contrast (see Figure S10b in the SI), confirming the
184 valley selection rule from the D_{3h} crystal symmetry (see the SI, Section 10).⁽²¹⁾ When
185 switching the control light on and off, the polarization directions of SHG after passing
186 a quarter-wave plate are almost the same with only $\pm 2^\circ$ variation (fitted
187 parameters, Figure 1f), indicating that only $\sigma+$ polarized SHG is enhanced. This proves
188 that symmetry remains conserved in the presence of control light excitation.

189 To explore the modulation mechanism, we measure the temporally and spectrally
190 resolved SHG fractional power changes ($\Delta P_{\text{SHG}} = (P_w - P_{w0})/P_{w0}$) at different seed
191 energies ($\hbar\omega_s$ from -0.92 to 1.44 eV) with a fixed control light energy of 1.55 eV. We
192 note that the normalized time-resolved SHG dynamics with control light at 1.55 eV is
193 similar to that observed at 3.1 eV (see Figure S4a in the SI). The former one allows us
194 to precisely determine the zero-delay time by sum frequency generation in
195 MoS₂ (see Figure S5 in the SI).

196 Figure 2a shows a broadband overview of the wavelength dependent SHG modulation
197 dynamics. The SHG is enhanced (i.e., $\Delta P_{\text{SHG}} \geq 0$) by the control light when $\hbar\omega_{\text{SHG}}$ (λ_{SHG})
198 lies in the ~ 2.07 – 2.56 eV (~ 598 – 485 nm) range. We denote this spectral range as
199 the *enhancement region*. A representative result for $\hbar\omega_{\text{SHG}} \approx 2.27$ eV is plotted
200 in Figure 2b, showing the dynamics similar to that in Figure 1b. When $\hbar\omega_{\text{SHG}}$ is in
201 either the ~ 2.64 – 2.88 eV (i.e., ~ 470 – 430 nm) or the 1.84 – 2.07 eV (i.e., ~ 675 – 598 nm)
202 range, the SHG is reduced (i.e., $\Delta P_{\text{SHG}} \leq 0$) by the control light. We refer to this spectral
203 range as the *suppression region* (Figure 2a). A representative result is shown
204 in Figure 2c for $\hbar\omega_{\text{SHG}} \approx 2.85$ eV. In the suppression region, ΔP_{SHG} drops sharply in the
205 presence of control light and reaches its minimum within a delay time $\Delta\tau \approx 150$ fs,
206 faster than our experimental temporal resolution (see Figure S5a in the SI). Then,
207 ΔP_{SHG} recovers with biexponential time constants $\tau_1 \approx 590$ fs and $\tau_2 \approx 96$ ps (see fitting
208 details in Figure S4c in the SI). Within the range lying in between the above-mentioned
209 enhancement and suppression regions in Figure 2a (i.e., ~ 2.56 – 2.64 eV), our
210 measurements reveal an extremely fast decay ($\Delta\tau \approx 150$ fs) followed by a fast recovery
211 with a single-exponential time constant of ~ 600 fs. An example of this behavior with
212 $\hbar\omega_{\text{SHG}} \approx 2.58$ eV is offered in Figure 2d. We denote this spectral region as the *transition*
213 *region*.

214 In our measurements (Figure 2), the time-resolved dynamics is almost independent of
215 the seed and control light powers (see Figure S3 in the SI), whereas the relative SHG
216 change (ΔP_{SHG}) is linearly related with the control light power in all three regions using
217 the 3.1 eV control light. Therefore, we can rule out an exciton–exciton interaction effect
218 (e.g., exciton–exciton annihilation and Auger recombination), which would commonly

exhibit a nonlinear excitation power dependence. We can thus attribute the SHG modulation effects (i.e., enhancement and suppression) to various excitonic transition processes (e.g., scattering, transition, and recombination) in monolayer MoS₂. To gain further understanding, we plot ΔP_{SHG} as a function of the SHG photon energy (Figure 3a) for fixed seed and control light intensities with a delay $\Delta\tau \approx 1.3$ ps, where the maximum enhancement is achieved. We find that the minimum dip positions in the suppression region are well correlated with the energies of 1s bright exciton states (e.g., 1s_A, 1s_B, and 1s_C, where the subscript denotes the exciton species) in the linear absorption spectrum of monolayer MoS₂ (Figure 3c). We thus attribute the observed suppression of SHG to optical bleaching of bright excitons: the control light excites carriers from the ground state into quasi-continuum states with single-photon excitation processes at 3.1 eV (two-photon excitation at 1.55 eV), and the ground state becomes consequently depleted. This depletion inhibits the formation of bright excitons, blocking the typically observed bright excitonic enhancement effect of SHG and thus reducing the SHG signal.⁽¹¹⁾ We provide a theoretical quantification of this effect below (see Methods). The bleaching process is typically fast (normally <100 fs),^(31,32) which fits well with the dynamics in the suppression region (Figure 2c). The subsequent biexponential recovery process in the suppression region can be correlated with different carrier relaxation processes, which gradually relax to the ground carrier states: an initial period of fast recovery with a characteristic time $\tau_1 \approx 590$ fs can be attributed to carrier cooling dynamics and formation of bright excitons; a subsequent slow recovery with a time constant $\tau_2 \approx 96$ ps can be attributed to carrier-phonon scattering and nonradiative carrier recombination. This biexponential recovery dynamics is similar to what has been previously reported in linear-absorption-based pump–probe measurements on bright excitons.^(32,33) We also note that we demonstrate electrical tunability of all-optical suppression of SHG at the 1s_A exciton of 1.89 eV (see Figure S9 in the SI), which holds great interest for on-chip electrically tunable all-optical nonlinear device applications. Our results demonstrate that electrical doping suppresses optical modulation, in analogy to electrically tunable SHG.⁽²¹⁾ This further confirms that the optically suppressed SHG effect is related to the bright excitons.

249 Additionally, we observe two strong enhancement peaks at \sim 2.27 and 2.36 eV
250 in Figure 3a, which are far away from the A and B excitons. We verify that these two
251 enhancement peaks are not featured in either the linear interband absorption spectrum
252 (Figure 3c) or the wavelength-dependent SHG spectrum (see Figure S8 in the SI).
253 Furthermore, as shown in the time-resolved results of Figure 2a, the initial rise time of
254 SHG modulation in the enhancement region ($\tau_0 \approx 600$ fs, Figure 2b) is much longer
255 than that in the suppression region (typically \sim 150 fs, Figure 2c). This indicates a
256 completely different carrier dynamics, which excludes various simultaneous or ultrafast
257 nonlinear effects, including ultrafast optical bleaching and optical parametric
258 interactions. (34) At the same time, we do not observe any change in SHG modulation
259 at 2.27 eV when applying electrical doping (i.e., for a back gate tuning voltage in the
260 -100 to 100 V range). This indicates that electrical doping does not influence the SHG
261 enhancement. In addition, by comparing the normalized SHG polarization dependence
262 in monolayer MoS₂ with and without the control light (see Figure S10a in the SI), we
263 can exclude the possibility of a phase transition during the SHG enhancement process.
264 We also carry out SHG measurements in monolayer WS₂ (see Figures S15 and S16 in
265 the SI). We observe similar enhancement (with a measured γ reaching \sim 70) and
266 suppression effects in monolayer WS₂, further corroborating the reported all-optical
267 modulation as a general phenomenon in exciton-supporting TMDs. Figure 3b shows
268 ΔP_{SHG} results at a delay time of 2.8 ps (where the maximum enhancement is obtained
269 in Figure S16c in the SI). By comparing with the optical absorption spectral profile
270 in Figure 3d, we assign the dip at \sim 1.98 eV in the suppression region to an effect
271 involving the bright $1s_A$ state, which also matches well with the PL measurements
272 (see Figure S14 in the SI). In addition, the enhancement region in the ΔP_{SHG} spectrum
273 ranging from \sim 2.0 to 2.67 eV displays a strong peak at \sim 2.11 eV and two small peaks
274 at \sim 2.43 and \sim 2.58 eV, all of which are not visible in the linear interband absorption
275 spectrum (Figure 3d).

276 To understand the observed optically driven SHG enhancement, we elaborate a
277 theoretical interpretation of our experimental results in monolayer MoS₂ based on first-
278 principles calculations combined with a phenomenological treatment of optical

279 pumping. We start by producing accurate calculations of the electronic band structure,
280 as well as the exciton energies and wave functions (see Section S14 in the SI). We then
281 introduce optical pumping through an effective depletion of electrons within an energy
282 interval Δ at the top of the valence band, accompanied by the corresponding filling near
283 the bottom of the conduction band (Figure 4a). The optical transition strengths
284 associated with the excitons are then modified by this redistribution of band
285 occupations, which we directly introduce in the electron–hole-pair (e–h) decomposition
286 of their wave functions (see Methods). This allows us to produce a map of exciton
287 transition strengths resolved in photon energy and band depletion energy Δ (Figure 4b).
288 Spectral variations for selected values of Δ are shown in Figure 4c after introducing a
289 spectral broadening to facilitate comparison to experiment. As the depletion energy
290 increases, we find that the allowed excitations vary considerably: dark excitons with
291 originally low oscillator strength increase their transition dipoles and dominate the
292 optical spectrum, while bright excitons become weaker, in qualitative agreement with
293 the experimental observations. We identify four dominant dark excitons in this process
294 (D_1 – D_4), whose real-space wave functions are potted in Figure 4d. We also note that
295 there must be multiple excitations with low oscillator strength that may contribute to
296 the SHG signal, but here we concentrate on the dominant excitations contributing to the
297 observed effects. In addition, assuming that all of the energy absorbed by the material
298 from the control light is invested in producing a depletion Δ (see Methods), we find that
299 the required light intensities are a factor of ~ 3 lower than those used in experiments
300 (Figure 4b, right scale), which is reasonable in view of the fact that part of that energy
301 can be lost through other dissipative processes (e.g., by spreading the energy among
302 carriers away from the K point).

303 Supported by these theoretical calculations, we attribute the SHG enhancement to the
304 modified exciton oscillation strength created by a redistribution of excited carriers. In
305 the enhancement region, we propose that some of the carriers in the quasi-continuum
306 of states excited by the control light scatter into low-energy bands and modify the e –
307 h composition of the excited dark excitonic states, which acquire a substantial transition
308 strength, thus playing a leading role in SHG (Figure 4b, c). We therefore attribute the

309 rise time (e.g., $\tau_0 = \sim 600$ fs in Figure 1b) to the remorphing of the $e\text{-}h$ pair composition
310 of dark excitons. The enhancement decreases due to decay of the excited carrier states
311 with a relatively slow biexponential behavior (e.g., $\tau_1 = \sim 2.9$ ps and $\tau_2 = \sim 325$ ps at
312 ~ 2.27 eV, Figure 2b). We further attribute the fast decay to cooling dynamics of the
313 excited dark excitons, while the slow recovery can be related to carrier-phonon
314 scattering and nonradiative carrier recombination. We note that the decay time in the
315 enhancement region is typically ~ 10 times longer than the biexponential recovery
316 components in the suppression region induced by bright excitons (Figure 2a, c). This
317 fits well with the results of excited exciton dynamics observed in previous
318 experiments.⁽²²⁾ The leading role played by dark excitons can be further confirmed by
319 comparing the enhancement peak positions with calculated dark exciton
320 energies⁽³⁵⁾ (see our comparison in Table S2 in the SI) and mid-infrared intraband
321 absorption measurements (see details in Table S1 in the SI). (31) We find that the two
322 enhancement peaks at ~ 2.27 and ~ 2.36 eV are likely associated with the $2p$ and
323 $3p$ excitonic states, respectively.

324 To explain the dynamics in the transition region, we plot time-resolved SHG
325 modulation at different time delays in the $\sim 2.5\text{--}2.6$ eV spectral range (see Figure S7g in
326 the SI). The results confirm that the time-resolved SHG dynamics (Figure 2d) is
327 governed by the contributions from the suppression and enhancement effects at
328 different time scales: the fast suppression process (< 150 fs) in the transition region is
329 initially dominated by bright exciton suppression, similar to the suppression region;
330 then, a relatively slow (~ 1 ps) enhancement process takes over, similar to the initial
331 response in the enhancement region.

332 The generality of the dark-exciton mechanism and the dynamics unveiled in this work
333 is further supported by SHG experiments in monolayer WS₂ (Figure 3b; see
334 also Figures S14–S16 in the SI). We assign those peaks in the enhancement region as
335 $2p$, $3p$, and $4p$ dark states by comparing with the energies of dark states from
336 refs⁽²⁸⁾ and⁽³⁶⁾ (see Table S3 in the SI). This suggests that all-optical modulation of SHG
337 is indeed applicable to other TMDs as well as their heterostructures. We also note that
338 similar modulation effects are possible in other types of nonlinear optical processes,

339 such as third harmonic generation, optical comb generation, and high harmonic
340 generation, which deserve further investigation.

341 Although bright excitons (e.g., the 1s excitonic state) have been well studied already,
342 dark excitons remain largely unexplored. This is because they are optically forbidden
343 when relying on traditional interband absorption/emission-based pump–probe
344 spectroscopy due to the optical selection rules.⁽²⁸⁾ Here, thanks to our time-resolved
345 SHG modulation method, we can access dark excitonic states and study their properties
346 (e.g., population dynamics). The demonstrated method features two additional
347 advantages for carrier dynamics exploration: First, its sensitivity is extremely high
348 because the detection parameter of the modulation or change of the SHG signal can be
349 extremely strong. For example, our modulation amplitude (i.e., the change in SHG
350 intensity) is 4 orders of magnitude larger than the variation in the linear absorption (e.g.,
351 ~0.2% at ~2.27 eV in MoS₂, as previously reported with traditional pump–probe
352 spectroscopy⁽³⁷⁾); secondly, the background noise is low because the detection signal is
353 SHG, thus avoiding the strong probe signal background that is commonly encountered
354 in traditional pump–probe spectroscopy.

355

356 **Conclusions**

357 We have demonstrated giant all-optical modulation of SHG mediated by excitons in
358 monolayer TMDs. The transient dynamics of excitonic dark and bright states in
359 monolayer MoS₂ has been determined to be the origin of the observed SHG modulation.
360 Thanks to a redistribution of charge carriers produced by a control light beam, dark
361 states acquire a substantial transition strength that contributes to enhance the SHG by a
362 factor as large as 386 in our measurements. In addition, SHG is suppressed by applying
363 electrical gating when the bright excitons are optically bleached. Our results on all-
364 optical modulation of SHG provide a basis for exploiting the unique exciton-photon
365 interactions in 2D materials, while they enable the development of emerging all-optical
366 nonlinear optoelectronic applications.^(38,39) For example, the modulation amplitude,
367 sign, and response time can be adjusted over a broad spectral range spanning a few
368 electronvolts (see Figures 2a and S11). We have identified three observed regions with

369 completely different SHG modulation responses that can potentially enable versatile
370 photonic devices with different functionalities. In particular, an enhancement region
371 that could be utilized for all-optically enhanced nonlinear processes with giant
372 enhancement ratios by applying a relatively low control power. Also, a transition region,
373 in which the large fractional SHG change $|\Delta P_{\text{SHG}}|$ (up to 62%, equivalent to the
374 modulation depth of an optical modulator, see Figure S6 in the SI) and the ultrafast fall
375 (<150 fs) and rise (~ 600 fs) response times could be used for ultrafast all-optical
376 photonic devices, such as all-optical nonlinear modulators. Such a fast response time
377 corresponds to a modulation speed of ~ 1.4 THz, which is ~ 14 times faster than that of
378 state-of-the-art electro-optic modulators.⁽⁴⁰⁾

379

380

381 **Methods**

382 **Material Synthesis and Characterization**

383 Monolayer MoS₂ is grown on a SiO₂/Si substrate by using the chemical vapor
384 deposition method with an ~ 10 mg sulfur (at 170 °C) and $\sim 0.5/15$ mg
385 NaCl/MoO₃ mixture (at 750 °C) for 5 min in high purity argon.⁽⁴¹⁾ Optical
386 characterization of MoS₂, including Raman, photoluminescence, and reflection spectra,
387 can be found in Figure S2 in the SI. A similar method is used to synthesize WS₂, for
388 which characterization is presented in Figure S14 in the SI.

389 **Experimental Methods**

390 In the all-optical modulation experiment, the control and seed light pulses (2 kHz
391 repetition rate) are generated by an optical parametric amplifier (Spectra-Physics,
392 TOPAS) and divided into two parts using a dichroic mirror. The pulse duration of both
393 control and seed pulses is ~ 230 fs. The seed light goes through an optical delay line
394 and is then combined with the control light by using another dichroic mirror (see Figure
395 S1 in the SI). The combined beams are focused on the sample by a 40 \times objective of NA
396 0.75. The full-width-at-half-maximum beam diameters of the control light at 400 nm
397 (800 nm) and the seed light are ~ 2.5 and ~ 2.2 μm , respectively. The generated SHG
398 signal is then collected by a monochromator (Andor 328i). Different filters are used to

399 remove the control and seed light before the monochromator. A photomultiplier tube
400 (PMT, H7844 Hamamatsu) connected to a lock-in amplifier is used to detect and
401 monitor the SHG signal. To calibrate the photon energy dependence, we extract the
402 data after considering the whole system loss within the broad range of used photon
403 energies and the optical reflectance/absorption of both MoS₂ and the substrate.

404 **Theoretical Calculations**

405 We model the pumping-dependent change in the exciton transition strengths from first
406 principles assuming an effective depletion of the valence band produced by the control
407 light. We obtain Kohn–Sham (KS) wave functions and eigenvalues by performing
408 density-functional theory (DFT) calculations using the QUANTUM ESPRESSO
409 code.⁽⁴²⁾ We then use the Perdew–Burke–Ernzerhof (PBE) version of the generalized
410 gradient approximation (GGA) for the exchange-correlation functional,⁽⁴³⁾ combined
411 with norm-conserving, fully relativistic pseudopotentials of the Pseudo-Dojo
412 database.⁽⁴⁴⁾ The plane-wave energy cutoff is set to 90 Ry for the ground-state
413 calculations. We use the supercell method and include 45 atomic units of vacuum space
414 between two periodic images of the semiconductor layer in order to minimize
415 interactions between adjacent cells. Quasiparticle self-energy corrections to the KS
416 eigenenergies are calculated within the many-body G₀W₀ approximation^(45,46) as
417 implemented in the YAMBO code.⁽⁴⁷⁾ The absorption spectrum and excitonic effects
418 are obtained by solving the Bethe–Salpeter equation^(48,49) (BSE) on top of G₀W₀. The
419 excitonic wave functions are described as $|\Phi^S\rangle = \sum_{vck} A_{vck}^S |vck\rangle$, where *v* and *c* denote
420 valence and conduction band indices, *k* runs over wave vectors, A_{vck}^S are expansion
421 coefficients, and *S* is the exciton index. The excitation energies are determined by
422 solving the BSE equations $(E_{ck} - E_{vk})A_{vck}^S + \sum_{v'c'k'} \langle vck | K_{eh} | v'c'k' \rangle A_{v'c'k'}^S = \Omega^S A_{vck}^S$, where
423 Ω^S is the exciton eigenvalue, E_{vk} and E_{ck} denote the quasiparticle energies of valence
424 and conduction electron band states, respectively, and K_{eh} is the electron–hole
425 interaction kernel. We employ a wave vector grid consisting of $30 \times 30 \times 1$ *k* points for
426 both G₀W₀ and BSE calculations. The Coulomb cutoff technique is used at the edges
427 of unit cells in the out-of-plane direction.⁽⁴⁷⁾ We compute the self-energy and dynamical

428 dielectric screening using 200 bands. The four highest valence bands and four lowest
429 conduction bands are taken into account in the calculation of excitonic states.⁽⁵⁰⁾
430 We simulate the optical transition strength in the presence of optical pumping by
431 introducing an effective electron depletion near the top of the valence band, and
432 correspondingly, an occupation near the bottom of the conduction band that preserves
433 charge neutrality. More precisely, we calculate the pumping-dependent transition
434 strength of exciton S using the expression $f_S = |\langle G|\vec{r}|\tilde{\Phi}^S \rangle|^2 / |\langle G|\tilde{\Phi}^S \rangle|^2$, where $|G\rangle$ denotes
435 the ground state, whereas $|\tilde{\Phi}^S\rangle = \sum_{vck} A_{vck}^S f_{vk} (1 - f_{ck}) |vck\rangle$ is the exciton wave function
436 obtained from its electron–hole-pair decomposition coefficients A_{vck}^S and modified by
437 electron redistribution according to the hole and electron occupations f_{vk} and f_{ck} that
438 follow the band filling scheme shown in Figure 4a. For each given value of the valence
439 depletion energy Δ , the conduction filling Δ' is obtained by imposing charge neutrality
440 through $\int_{\text{CBM}}^{\text{CBM}+\Delta'} dE_{ck} \rho_{Eck} = \int_{\text{VBM}-\Delta}^{\text{VBM}} dE_{vk} \rho_{Evk}$, where VBM and CBM correspond to
441 the valence band maximum and conduction band minimum, respectively, and ρ_{Eck} and
442 ρ_{Evk} are the conduction and valence band densities of states, respectively. The depletion
443 Δ is approximately related to the pumping light intensity I_0 through the expression
444 $\int_{\text{CBM}}^{\text{CBM}+\Delta'} dE_{ck} E_{ck} \rho_{Eck} - \int_{\text{VBM}-\Delta}^{\text{VBM}} dE_{vk} E_{vk} \rho_{Evk} = I_0 A \tau_{\text{eff}}$, where A is the absorbance
445 calculated at the pump energy $\hbar\omega_p = 3.1$ eV and τ_{eff} is an effective electron–hole
446 recombination time, which we set to an estimated value of 4 ps.⁽⁵¹⁾

447

448 **Author Contributions**

449 Y.W., S.D., and F.I. contributed equally to this paper. Y.W. and Z.S. conceived the idea.
450 Y.W. and S.D. performed the measurements assisted by Y.D., L.S., X.G., X.Y., and
451 Q.D. fabricated the MoS₂/WS₂ crystals. Y.W., S.D., Y.D., T.H., and Z.S. performed
452 data analysis and wrote the manuscript. X.H., M.G., S.W., X.G., J.Z., and K.L.
453 suggested the optical measurements. F.J.G.A. proposed the theoretical model. F.I.
454 performed the theoretical calculations. All authors discussed the results and commented
455 on the manuscript. All experimental works were done in Finland.

456

457 **Notes**

458 The authors declare no competing financial interest.

459

460 **Acknowledgments**

461 We thank Profs. Ermin Malic, Lijun Zhang, Thomas G. Pedersen, and Dr. Samuel Brem
462 for their useful discussions. The authors acknowledge the financial support from Aalto
463 Centre for Quantum Engineering, Academy of Finland (Grants: 312297, 312551,
464 314810, 333982, 336144 and 336818), Academy of Finland Flagship Programme
465 (320167, PREIN), Youth Innovation Promotion Association CAS, the European
466 Union's Horizon 2020 research and innovation program (Grant Agreement No. 820423,
467 S2QUIP; 965124, FEMTOCHIP), National Natural Science Foundation of China
468 (NSFC) (11634010, 51925203, 2022025, 51972074, 11674073, U2032206), the EU
469 H2020-MSCA-RISE-872049 (IPN-Bio), China Scholarship Council, ERC (834742),
470 Finnish Foundation for Technology Promotion (8216), the Spanish MINECO
471 (MAT2017-88492-R and SEV2015-0522), the Catalan CERCA Program, and Fundació
472 Privada Cellex, the Strategic Priority Research Program of the Chinese Academy of
473 Sciences (XDB30000000, XDB360202), Youth Innovation Promotion Association
474 CAS, and CAS Interdisciplinary Innovation Team (JCTD-2018-03).

475

476

477 **References**

- 478 (1) Boyd, R. W. *Nonlinear Optics*, 3rd ed.; Elsevier, 2007.
- 479 (2) Qi, J.; Yeganeh, M. S.; Koltover, I. I.; Yodh, A. G.; Theis, W. M. Depletion-electric-field-induced
480 changes in second-harmonic generation from GaAs. *Phys. Rev. Lett.* 1993, 71 (4), 633–636.
- 481 (3) Johnson, J. C.; Knutsen, K. P.; Yan, H.; Law, M.; Zhang, Y.; Yang, P.; Saykally, R. J. Ultrafast carrier
482 dynamics in single ZnO nanowire and nanoribbon lasers. *Nano Lett.* 2004, 4 (2), 197–204.
- 483 (4) Davidson, R. B.; Yanchenko, A.; Ziegler, J. I.; Avanesyan, S. M.; Lawrie, B. J.; Haglund, R. F.
484 Ultrafast plasmonic control of second harmonic generation. *ACS Photonics* 2016, 3 (8), 1477–1481.
- 485 (5) Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X.-Y. Hot-electron
486 transfer from semiconductor nanocrystal. *Science* 2010, 328, 1543–1547.

487 (6) Jailaubekov, A. E.; Willard, A. P.; Tritsch, J. R.; Chan, W. L.; Sai, N.; Gearba, R.; Kaake, L. G.;
488 Williams, K. J.; Leung, K.; Rossky, P. J.; Zhu, X. Y. Hot charge-transfer excitons set the time limit for
489 charge separation at donor/acceptor interfaces in organic photovoltaics. *Nat. Mater.* 2013, 12 (1), 66–73.

490 (7) Goodman, A. J.; Dahod, N. S.; Tisdale, W. A. Ultrafast charge transfer at a quantum Dot/2D materials
491 interface probed by second harmonic generation. *J. Phys. Chem. Lett.* 2018, 9 (15), 4227–4232.

492 (8) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals
493 heterostructures. *Science* 2016, 353 (6298), aac9439.

494 (9) Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered
495 materials. *Adv. Mater.* 2018, 30 (24), 1705963.

496 (10) Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B.
497 Colloquium: Excitons in atomically thin transition metal dichalcogenides. *Rev. Mod. Phys.* 2018, 90 (2),
498 No. 021001.

499 (11) Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense
500 second harmonic generation from MoS₂ atomic crystals. *Phys. Rev. B: Condens. Matter Mater. Phys.*
501 2013, 87 (20), 201401.

502 (12) Clark, D. J.; Senthilkumar, V.; Le, C. T.; Weerawarne, D. L.; Shim, B.; Jang, J. I.; Shim, J. H.; Cho,
503 J.; Sim, Y.; Seong, M. J.; Rhim, S. H.; Freeman, A. J.; Chung, K. H.; Kim, Y. S. Strong optical
504 nonlinearity of CVD-grown MoS₂ monolayer as probed by wavelength- dependent second-harmonic
505 generation. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2014, 90 (12), 121409.

506 (13) Wang, G.; Marie, X.; Gerber, I.; Amand, T.; Lagarde, D.; Bouet, L.; Vidal, M.; Balocchi, A.;
507 Urbaszek, B. Giant enhancement of the optical second-harmonic emission of WSe₂ monolayers by laser
508 excitation at exciton resonances. *Phys. Rev. Lett.* 2015, 114 (9), No. 097403.

509 (14) Wen, X.; Xu, W.; Zhao, W.; Khurgin, J. B.; Xiong, Q. Plasmonic hot carriers-controlled second
510 harmonic generation in WSe₂ bilayers. *Nano Lett.* 2018, 18 (3), 1686–1692.

511 (15) Dhakal, K. P.; Kim, H.; Lee, S.; Kim, Y.; Lee, J.; Ahn, J. H. Probing the upper band gap of atomic
512 rhenium disulfide layers. *Light: Sci. Appl.* 2018, 7, 98.

513 (16) Lin, K.-Q.; Bange, S.; Lupton, J. M. Quantum interference in second-harmonic generation from
514 monolayer WSe₂. *Nat. Phys.* 2019, 15 (3), 242–246.

515 (17) Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Second harmonic
516 microscopy of monolayer MoS₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2013, 87 (16), 161403.

517 (18) Mennel, L.; Smejkal, V.; Linhart, L.; Burgdorfer, J.; Libisch, F.; Mueller, T. Band nesting in two-
518 dimensional crystals: An exceptionally sensitive probe of strain. *Nano Lett.* 2020, 20 (6), 4242–4248.

519 (19) Mannebach, E. M.; Duerloo, K. A.; Pellouchoud, L. A.; Sher, M. J.; Nah, S.; Kuo, Y. H.; Yu, Y.;
520 Marshall, A. F.; Cao, L.; Reed, E. J.; Lindenberg, A. M. Ultrafast electronic and structural response of
521 monolayer MoS₂ under intense photoexcitation conditions. *ACS Nano* 2014, 8 (10), 10734–10742.

522 (20) Jang, H.; Dhakal, K. P.; Joo, K. I.; Yun, W. S.; Shinde, S. M.; Chen, X.; Jeong, S. M.; Lee, S. W.;
523 Lee, Z.; Lee, J.; Ahn, J. H.; Kim, H. Transient SHG imaging on ultrafast carrier dynamics of MoS₂
524 nanosheets. *Adv. Mater.* 2018, 30 (14), 1705190.

525 (21) Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S.; Yan, J.; Mandrus, D. G.;
526 Yao, W.; Xu, X. Electrical control of second-harmonic generation in a WSe₂ monolayer transistor. *Nat.*
527 *Nanotechnol.* 2015, 10 (5), 407–411.

528 (22) Xiao, J.; Ye, Z.; Wang, Y.; Zhu, H.; Wang, Y.; Zhang, X. Nonlinear optical selection rule based on
529 valley-exciton locking in monolayer WS₂. *Light: Sci. Appl.* 2015, 4, e366.

530 (23) Yu, H.; Talukdar, D.; Xu, W.; Khurgin, J. B.; Xiong, Q. Chargeinduced second-harmonic generation
531 in bilayer WSe₂. *Nano Lett.* 2015, 15 (8), 5653–5657.

532 (24) Le, C. T.; Clark, D. J.; Ullah, F.; Jang, J. I.; Senthilkumar, V.; Sim, Y.; Seong, M.-J.; Chung, K.-H.;
533 Kim, J. W.; Park, S.; Rhim, S. H.; Kim, G.; Kim, Y. S. Impact of selenium doping on resonant
534 secondharmonic generation in monolayer MoS₂. *ACS Photonics* 2017, 4 (1), 38–44.

535 (25) Taghinejad, M.; Xu, Z.; Wang, H.; Taghinejad, H.; Lee, K. T.; Rodrigues, S. P.; Adibi, A.; Qian, X.;
536 Lian, T.; Cai, W. Photocarrierinduced active control of second-order optical nonlinearity in monolayer
537 MoS₂. *Small* 2020, e1906347.

538 (26) Dai, Y.; Wang, Y.; Das, S.; Xue, H.; Bai, X.; Hulkko, E.; Zhang, G.; Yang, X.; Dai, Q.; Sun, Z.
539 Electrical Control of Interband Resonant Nonlinear Optics in Monolayer MoS₂. *ACS Nano* 2020, 14 (7),
540 8442–8448.

541 (27) Wang, Y.; Ghotbi, M.; Das, S.; Dai, Y.; Li, S.; Hu, X.; Gan, X.; Zhao, J.; Sun, Z. Difference frequency
542 generation in monolayer MoS₂. *Nanoscale* 2020, 12 (38), 19638–19643.

543 (28) Ye, Z.; Cao, T.; O'Brien, K.; Zhu, H.; Yin, X.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic
544 dark states in single-layer tungsten disulphide. *Nature* 2014, 513, 214–218.

545 (29) Quan, C.; Lu, C.; He, C.; Xu, X.; Huang, Y.; Zhao, Q.; Xu, X. Band alignment of MoTe₂/MoS₂
546 nanocomposite films for enhanced nonlinear optical performance. *Adv. Mater. Interfaces* 2019, 6 (5),

547 1801733.

548 (30) Wabnitz, S.; Eggleton, B. J. All-optical signal processing; Springer Series in Optical Sciences;
549 Springer, 2015; Vol. 194.

550 (31) Cha, S.; Sung, J. H.; Sim, S.; Park, J.; Heo, H.; Jo, M. H.; Choi, H. 1s-intraexcitonic dynamics in
551 monolayer MoS₂ probed by ultrafast mid-infrared spectroscopy. *Nat. Commun.* 2016, 7, 10768.

552 (32) Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton
553 dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. *ACS Nano* 2013, 7 (2), 1072–1080.

554 (33) Ceballos, F.; Cui, Q.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal
555 dichalcogenides. *Nanoscale* 2016, 8 (22), 11681–11688.

556 (34) Das, S.; Wang, Y. D.; Dai, Y. Y.; Li, S. S.; Sun, Z. P. Ultrafast transient sub-bandgap absorption of
557 monolayer MoS₂. *Light: Sci. Appl.* 2021, 10 (1), 27.

558 (35) Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS₂: many-body effects and
559 diversity of exciton states. *Phys. Rev. Lett.* 2013, 111 (21), 216805.

560 (36) Zhu, B.; Chen, X.; Cui, X. Exciton binding energy of monolayer WS₂. *Sci. Rep.* 2015, 5, 9218.

561 (37) Pogna, E. A.; Marsili, M.; De Fazio, D.; Dal Conte, S.; Manzoni, C.; Sangalli, D.; Yoon, D.;
562 Lombardo, A.; Ferrari, A. C.; Marini, A.; Cerullo, G.; Prezzi, D. Photo-induced bandgap renormalization
563 governs the ultrafast response of single-layer MoS₂. *ACS Nano* 2016, 10 (1), 1182–1188.

564 (38) Wang, Y. C.; Jons, K. D.; Sun, Z. P. Integrated photon-pair sources with nonlinear optics. *Appl. Phys.*
565 *Rev.* 2021, 8 (1), No. 011314.

566 (39) Du, L. J.; Hasan, T.; Castellanos-Gomez, A.; Liu, G. B.; Yao, Y. G.; Lau, C. N.; Sun, Z. P.
567 Engineering symmetry breaking in 2D layered materials. *Nature Reviews Physics* 2021, 3 (3), 193–206.

568 (40) Alloatti, L.; Palmer, R.; Diebold, S.; Pahl, K. P.; Chen, B.; Dinu, R.; Fournier, M.; Fedeli, J.-M.;
569 Zwick, T.; Freude, W.; Koos, C.; Leuthold, J. 100 GHz silicon–organic hybrid modulator. *Light: Sci.*
570 *Appl.* 2014, 3 (5), e173.

571 (41) Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-
572 assisted atmospheric pressure growth of large WSe₂ and WS₂ monolayer crystals. *Appl. Mater. Today*
573 2015, 1 (1), 60–66.

574 (42) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti,
575 G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.;
576 Gerstmann, U.; Gougaussis, C.; Kokalj, A.; Lazzeri, M.; Martin- Samos, L.; Marzari, N.; Mauri, F.;

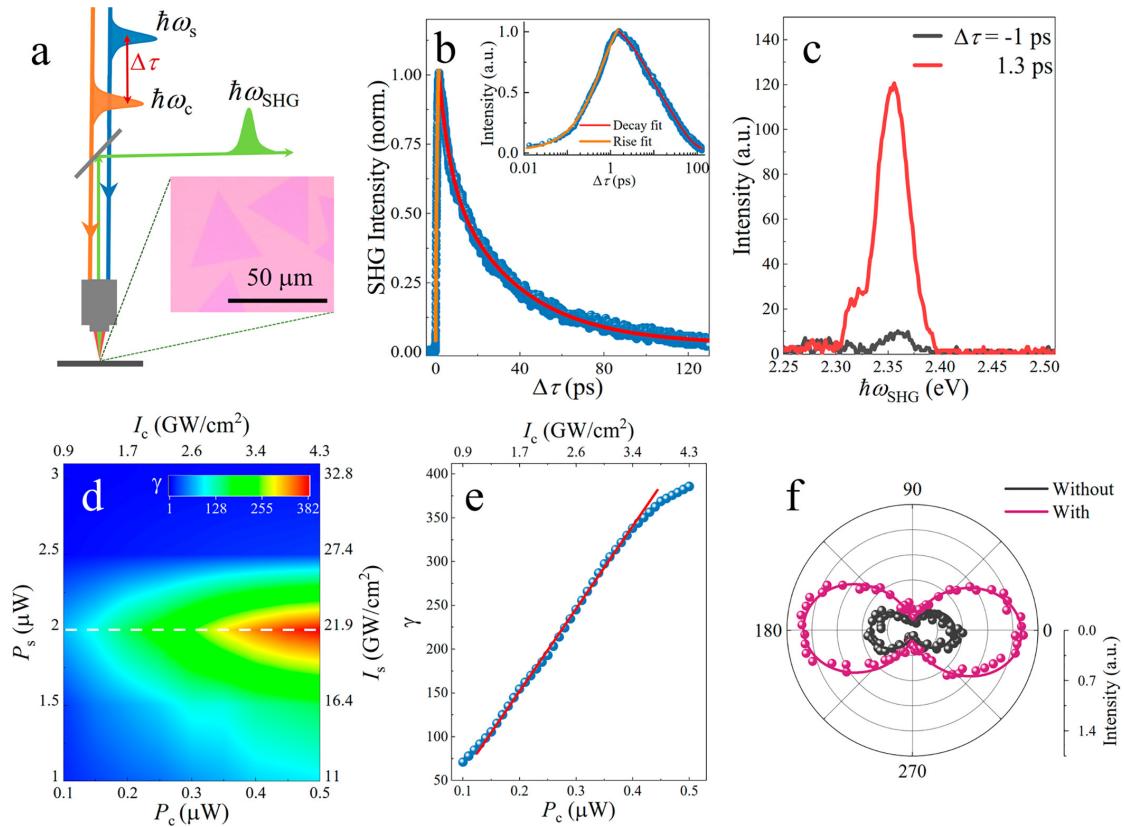
577 Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Selauzero, G.;
578 Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: a modular
579 and open-source software project for quantum simulations of materials. *J. Phys.: Condens. Matter* 2009,
580 21 (39), 395502.

581 (43) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev.*
582 *Lett.* 1996, 77 (18), 3865– 3868.

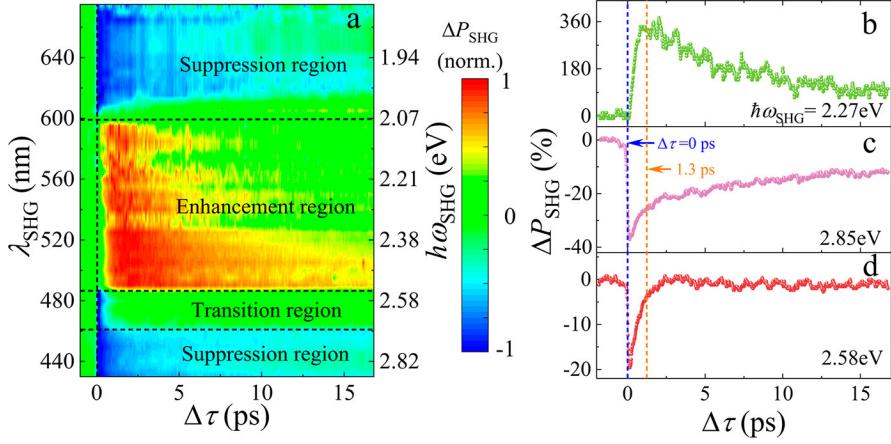
583 (44) Van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.;
584 Rignanese, G. M. The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving
585 pseudopotential table. *Comput. Phys. Commun.* 2018, 226, 39–54.

586 (45) Hedin, L. New method for calculating the one-particle Green's function with application to the
587 electron-gas problem. *Phys. Rev.* 1965, 139 (3A), A796.

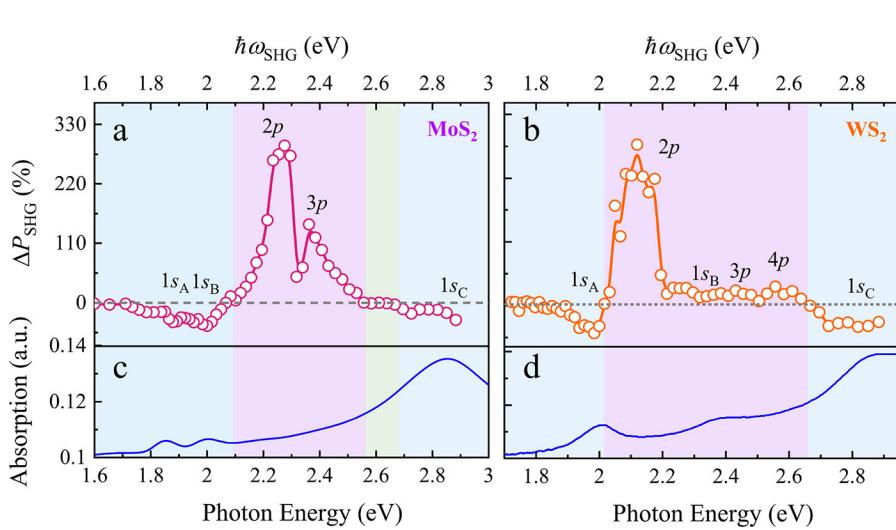
588 (46) Onida, G.; Reining, L.; Rubio, A. Electronic excitations: density-functional versus many-body
589 Green's-function approaches. *Rev. Mod. Phys.* 2002, 74 (2), 601–659.


590 (47) Marini, A.; Hogan, C.; Gruning, M.; Varsano, D. Yambo: an ab initio tool for excited state
591 calculations. *Comput. Phys. Commun.* 2009, 180 (8), 1392–1403.

592 (48) Rohlfing, M.; Louie, S. G. Electron-hole excitations and optical spectra from first principles. *Phys.*
593 *Rev. B: Condens. Matter Mater. Phys.* 2000, 62 (8), 4927–4944.


594 (49) Palummo, M.; Pulci, O.; Del Sole, R.; Marini, A.; Hahn, P.; Schmidt, W. G.; Bechstedt, F. The Bethe-
595 Salpeter equation: a firstprinciples approach for calculating surface optical spectra. *J. Phys. Condens.*
596 *Matter* 2004, 16 (39), S4313–S4322.

597 (50) Molina-Sanchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L. Effect of spin-orbit interaction
598 on the optical spectra of single-layer, double-layer, and bulk MoS₂. *Phys. Rev. B: Condens. Matter Mater.*
599 *Phys.* 2013, 88 (4), No. 045412.


600 (51) Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transit
601

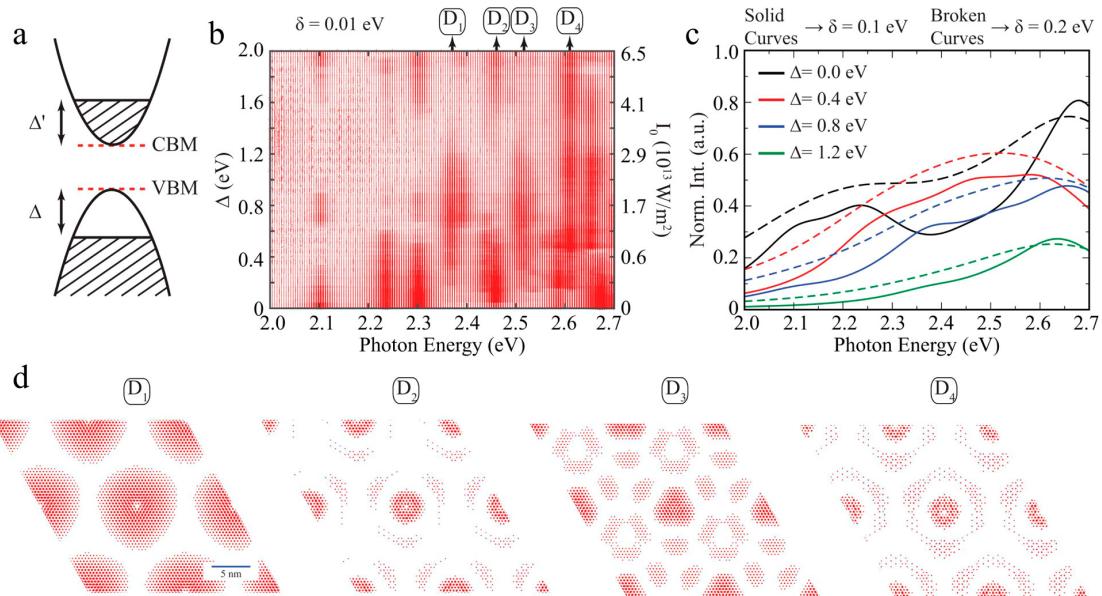

604 **Figure 1. Giant SHG enhancement in MoS₂.** (a) Sketch of the experimental setup.
 605 The inset shows an optical image of the probed MoS₂ flakes. (b) Normalized SHG
 606 intensity as a function of delay time $\Delta\tau$. The average power of the control and seed light
 607 is ~ 0.5 and $\sim 2 \mu\text{W}$, respectively. The pulse duration is ~ 230 fs. The inset shows a
 608 semilog rendering of the same data. (c) SHG spectra before and after excitation with
 609 control light. (d) SHG enhancement factor γ as a function of input power/peak-intensity
 610 of the control (P_c, I_c) and seed (P_s, I_s) light. (e) Enhancement factor γ as a function of
 611 the control light power/intensity for $P_s = 2 \mu\text{W}$ (data along the white dashed line
 612 in Figure 1d). (f) Polar plot of the circularly polarized SHG measured after passing a
 613 quarter-wave plate with and without the control light using σ -seed light. In (b)–(e),
 614 $\hbar\omega_c \approx 3.1 \text{ eV}$. In (d)–(f), $\Delta\tau = 1.3 \text{ ps}$. In (b)–(f), $\hbar\omega_{\text{SHG}} \approx 2.36 \text{ eV}$.

Figure 2. Broadband all-optical SHG modulation dynamics in MoS₂. (a) Normalized SHG change ΔP_{SHG} as a function of time delay and SHG photon wavelength/energy. The vertical black dashed line indicates the position of $\Delta\tau = 0$ ps. (b-d) ΔP_{SHG} response for $\hbar\omega_{\text{SHG}} \sim 2.27$, 2.85, and 2.58 eV, respectively. Blue and orange dashed lines mark $\Delta\tau = 0$ and 1.3 ps. We use $I_c \approx 17.42$ GW/cm², $\hbar\omega_c \approx 1.55$ eV, and $I_s \approx 32.85$ GW/cm².

Figure 3. Maximum SHG modulation ΔP_{SHG} and optical absorption in monolayer MoS₂ and WS₂. (a) SHG change ΔP_{SHG} in monolayer MoS₂ for $\Delta\tau = 1.3$ ps, $\hbar\omega_c \approx 1.55$ eV, $I_c \approx 17.42$ GW/cm², and $I_s \approx 32.85$ GW/cm². (b) SHG change ΔP_{SHG} in monolayer WS₂ for $\Delta\tau = 2.8$ ps, $\hbar\omega_c \approx 3.1$ eV, $I_c \approx 2.57$ GW/cm², and $I_s \approx 32.85$ GW/cm². The gray dashed lines (zero value) and the solid curves connecting the dots are guides to the eye. (c, d) Linear optical absorption spectra of monolayer MoS₂ and WS₂, respectively. Different spectral regions are marked with background colors.

632

633 **Figure 4. Theoretical interpretation of SHG modulation in monolayer MoS₂. (a)**
634 Schematic representation of the electronic bands of monolayer MoS₂ around the K
635 point, showing an effective depletion region Δ produced upon optical pumping and a
636 corresponding population of the conduction band up to an energy Δ' adjusted to
637 preserve the overall electron density. **(b)** Oscillator strength of excitonic states in the
638 vicinity of the optically active region as a function of photon energy and Δ . **(c)**
639 Spectrally resolved excitonic oscillator strength for $\Delta = 0, 0.4, 0.8$, and 1.2 eV after
640 introducing a photon energy broadening of 0.1 eV (solid curves) and 0.2 eV (broken
641 curves). **(d)** Real-space wave functions of selected dark excitons, indicated by labels
642 D₁–D₄ in Figure 4b, respectively.

643

Supplementary Materials for

- **Giant all-optical modulation of second-harmonic generation mediated by dark excitons**

Yadong Wang^{1,2,†}, Susobhan Das^{2,†}, Fadil Iyikanat^{3,†}, Yunyun Dai², Shisheng Li⁴, Xiangdong Guo⁵, Xiaoxia Yang⁵, Jinluo Cheng⁶, Xuerong Hu^{2,7}, Masood Ghotbi⁸, Fangwei Ye⁹, Harri Lipsanen², Shiwei Wu¹⁰, Tawfique Hasan¹¹, Xuetao Gan¹, Kaihui Liu¹², Dong Sun¹³, Qing Dai⁵, F. Javier García de Abajo^{3,14,*}, Jianlin Zhao^{1,*} and Zhipei Sun^{2,15,*}

¹MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China

²Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland

³ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

⁴International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Japan

⁵Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

⁶Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China.

⁷International Cooperation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China

⁸Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj, Iran

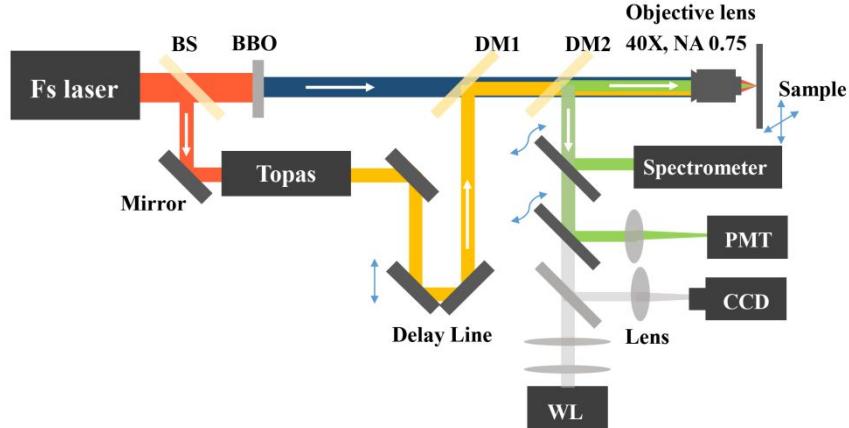
⁹School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

¹⁰State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China

¹¹Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.

¹²State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China

¹³International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China


¹⁴ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain

¹⁵QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, Finland

*Emails: zhipei.sun@aalto.fi, jlzhao@nwpu.edu.cn, javier.garcia-de-abajo@nanophotonics.es

†Those authors contributed equally to this paper.

1. Experimental setup

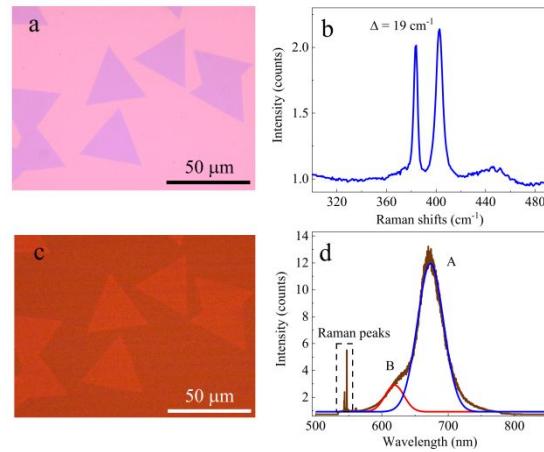
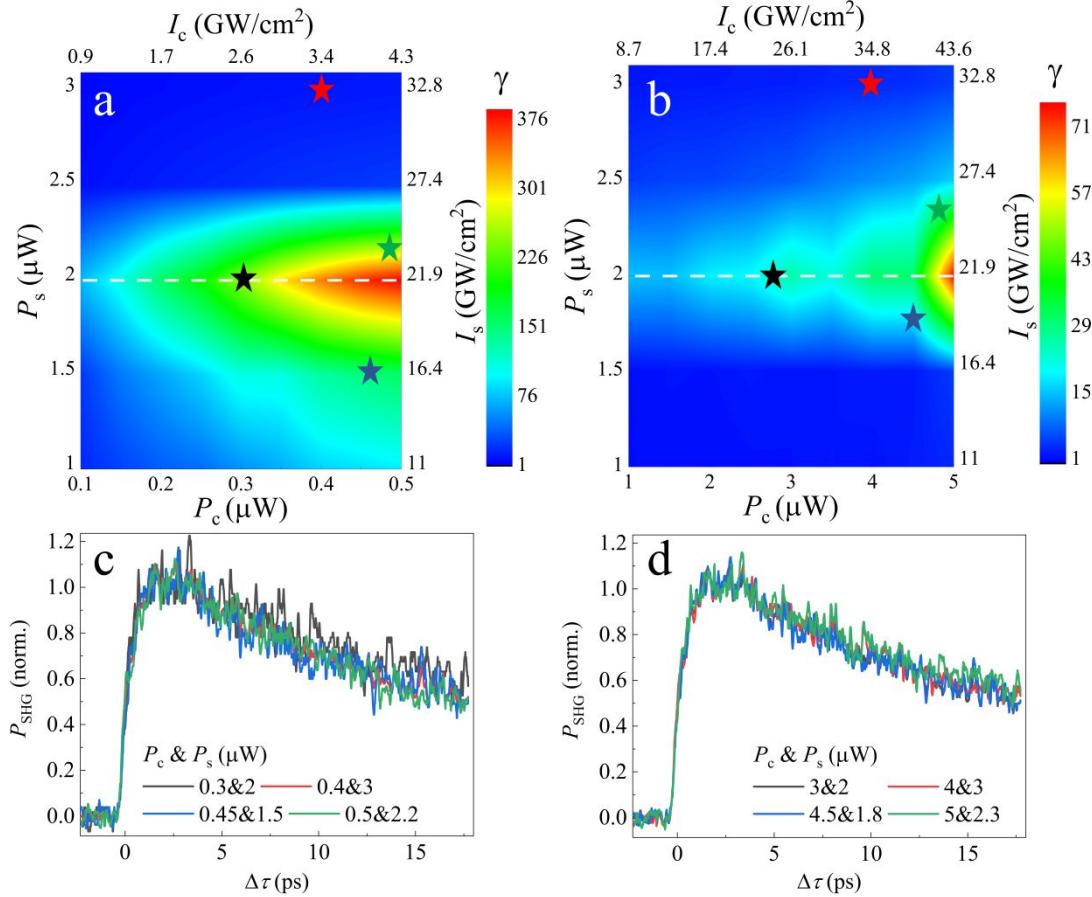
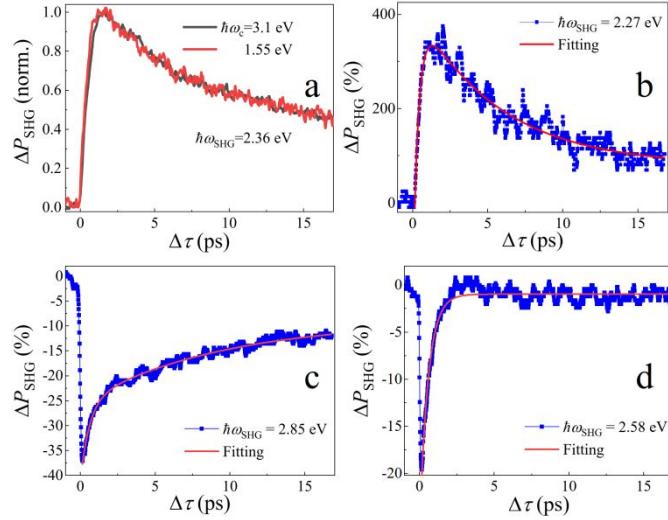


Fig. S1. Scheme of the experimental setup. The femtosecond laser source is Solstice Ace from Spectra-Physics. The TOPAS system is used for frequency conversion to produce the seed light with a wavelength range of 820-1600 nm. The control light wavelengths are either 400 nm or 800 nm. The pulse duration is \sim 230 fs and the repetition rate is 2 KHz. BBO: Beta barium borate; WL: white light for optical imaging of the sample; DM: dichroic mirror; BS: beam splitter; PMT: photomultiplier.

2. Monolayer MoS₂ sample characterization


The MoS₂ sample is prepared by chemical vapor deposition (CVD). Figure S2a shows a typical triangular flake deposited on a SiO₂/Si substrate. The Raman spectrum in Fig. S2b shows peaks at \sim 383 and 402 cm⁻¹, with a difference of 19 cm⁻¹ identifying monolayer MoS₂. As shown in Fig. S2c, photoluminescence (PL) mapping shows that the MoS₂ layer is grown well and uniformly. Furthermore, the measured PL spectrum reveals two strong peaks at 620 nm and 670 nm (fitted by Lorentzians), corresponding to B and A excitons, respectively, as shown in Fig.

S2d. Photoluminescence and Raman spectra are measured under excitation with a continuous-wave laser of 532 nm wavelength and 0.8 μ W incident power focused with a NA of 0.75.


Fig. S2. CVD MoS₂ optical characterization. (a) Optical image. (b) Raman spectrum. (c) Photoluminescence mapping at the same position as in (a). (d) Photoluminescence spectrum.

3. Control and seed light power dependence of the SHG enhancement factor and time-resolved dynamics

Fig. S3. (a,b) Power dependence of the enhancement factor γ for a control-seed delay $\Delta\tau = 1.3 \text{ ps}$ with control light of wavelength $\lambda_c = 400 \text{ nm}$ (a) and $\lambda_c = 800 \text{ nm}$ (b). (c,d) Normalized P_{SHG} dynamics with different control light powers P_c and seed light powers P_s for $\lambda_c = 400 \text{ nm}$ (c) and $\lambda_c = 800 \text{ nm}$ (d). The dynamics of P_{SHG} is shown in (c) and (d), respectively. The positions of stars in (a) and (b) correspond to different control and seed powers. The colors of stars and dynamics curves are coordinated.

4. Time-resolved ΔP_{SHG} dynamics in different regimes

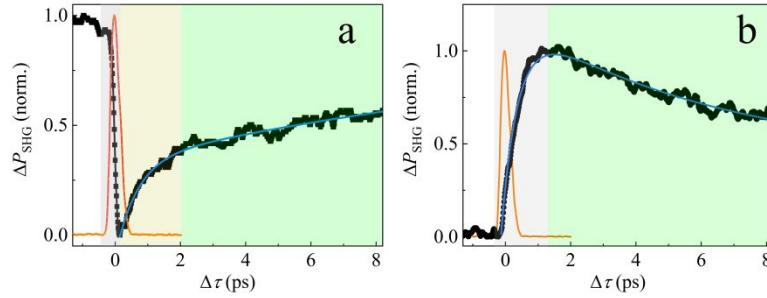
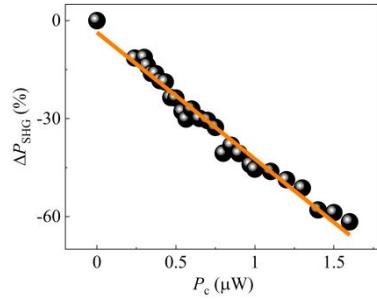


Fig. S4. (a) Time-resolved ΔP_{SHG} dynamics for two different control light photon energies (black: 3.1 eV; red: 1.55 eV) with seed light energy of 1.18 eV, which show a very similar transient response of ΔP_{SHG} . (b)-(d) Time-resolved ΔP_{SHG} dynamics with exponential fittings for three representative seed light energies in three different regimes: enhancement, suppression, and transition, respectively; the control light photon energy is fixed at 1.55 eV.

5. Photo-generation and recombination of charge carriers in transient ΔP_{SHG}


Figure S5 shows detailed measurements of carrier dynamics through ΔP_{SHG} . Figures S5a and S5c show the transient dynamics of ΔP_{SHG} when the SHG energies are 2.85 eV and 2.36 eV, respectively. The yellow curve is the sum frequency generation (SFG) measured under the same conditions to characterize the pulse duration. It shows that the drop time in Fig. S5a is much shorter than the control-seed light cross-correlation curve, while the decay time shows slower response, indicating the presence of different dynamical carrier processes. In contrast, in Fig. S5c ΔP_{SHG} at 2.36 eV photon energy initially rises until the delay time reaches $\Delta\tau = 1.3$ ps, and then

it starts to decay. We note that the rise time is longer than the pulse duration. Figures S5b and S5d show the relationship between the control light power and the SHG signal for $\Delta\tau = 0.15$ ps (Fig. S5a) and 1.3 ps (Fig. S5c).

Fig. S5. Transient ΔP_{SHG} response for $\hbar\omega_{\text{SHG}} = 2.85$ eV (a) and 2.36 eV (b) with the corresponding seed light photon energies at ~ 1.425 eV and 1.18 eV. The blue curves are exponential fittings of the decay processes. The orange curves indicate the signal of sum frequency generation (lying between the control light at 1.55 eV and the seed light), which is measured simultaneously during the all-optical modulation experiment. The peak positions of the sum frequency generation (orange curves) provide a good reference for the zero-time delay between the control and seed pulses.

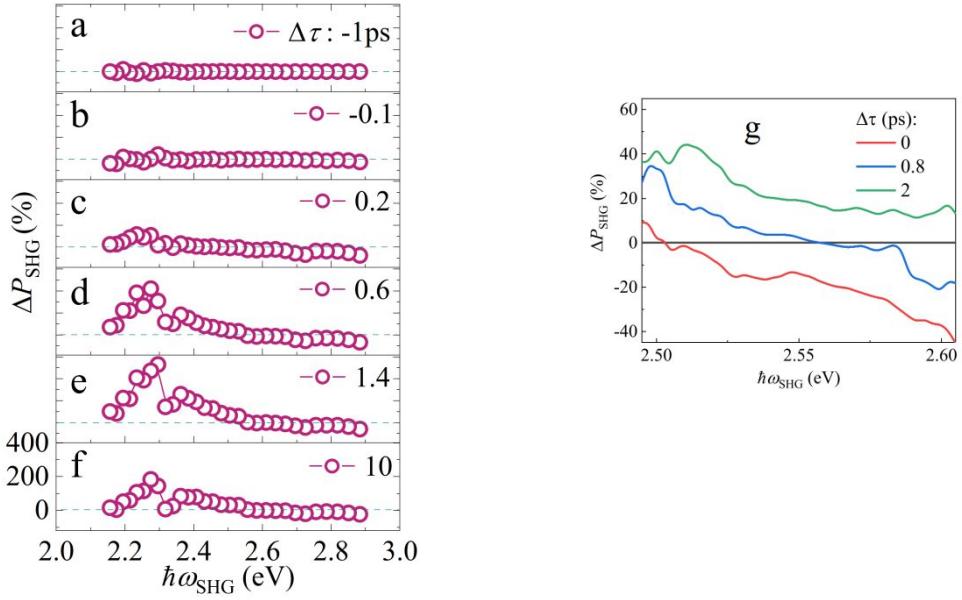
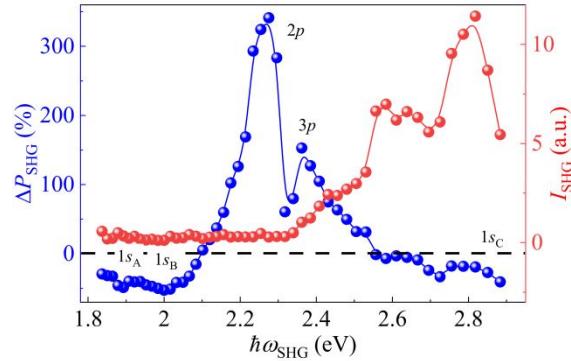

6. Modulation of ΔP_{SHG} with control light power in the transition region

Fig. S6. Linear power dependence for $\hbar\omega_{\text{SHG}} = 2.58$ eV and 2 μW average incident power of the seed light. The control light photon energy is $\hbar\omega_c = 3.1$ eV.


7. Time-resolved ΔP_{SHG} spectra

In Figure S7, we plot results from SHG modulation spectroscopy at different time delays in the spectral range from ~ 2.16 to 2.88 eV. The spectra show very clear dynamics when $\Delta\tau$ varies from -1 to 10 ps (Fig. S7a-f). We observe that the enhancement peak positions remain unchanged when introducing control light, indicating that bandgap renormalization does not affect the sign of the change in SHG modulation. Furthermore, detailed spectra near the $\Delta P_{\text{SHG}}=0$ condition are measured and shown in Fig. S7g, which shows blue shifts due to the evolution from the suppression region to the enhancement region.

Fig. S7. (a)-(f) ΔP_{SHG} spectra at different delays $\Delta\tau$. (g) Blue shift of ΔP_{SHG} spectra at different time delays when $\hbar\omega_{\text{SHG}}$ lies in the transition region.

8. Comparison between SHG and ΔP_{SHG} in MoS₂

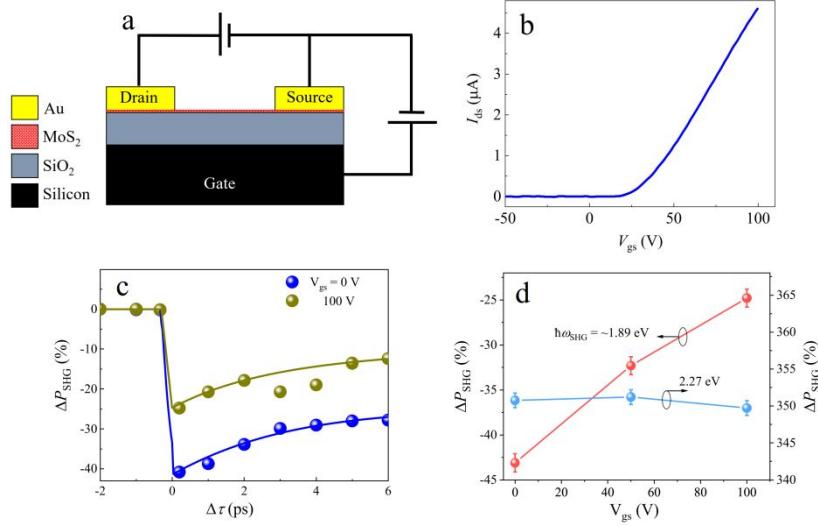


Fig. S8. Comparison between ΔP_{SHG} at $\Delta\tau = 1.1$ ps and the SHG responses of monolayer MoS₂.

We attribute the larger SHG responses observed at higher photon energies (e.g., at 2.8 eV) to the C-exciton resonance.

9. MoS₂ field-effect transistor and electrically tunable all-optical modulation of SHG

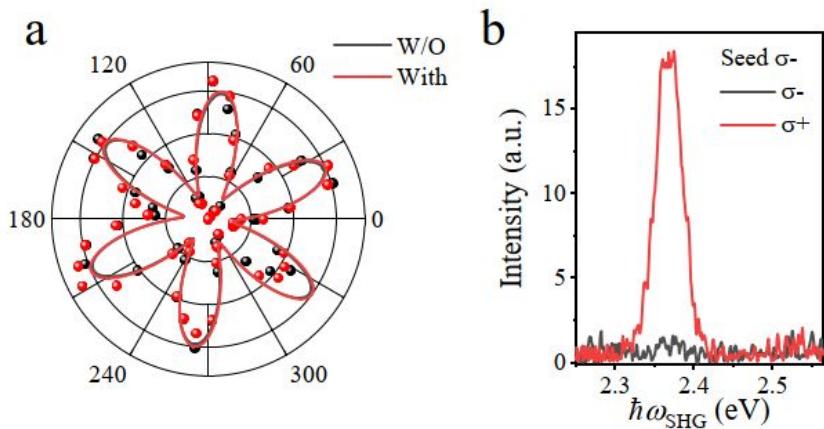

It has been previously reported that exciton resonances and electrical doping can change the SHG response in monolayer TMDs.¹ We therefore investigate the possibility of electrical tunability of our observation of all optical SHG modulation. To this end, we have fabricated a MoS₂ field-effect transistor (Fig. S9a) for the experiments. The two electrodes are first patterned using electron-beam lithography (Vistec 5000+ES, Germany) and then covered with Ti (10 nm)/Au (60 nm) using an electron beam evaporation (OHMIKER-50B, Taiwan). The electrical performance of this device is shown in Fig. S9b. In particular, ΔP_{SHG} at the $1s_{\text{A}}$ exciton (1.89 eV energy) with different gate voltages (V_g) is shown in Fig. S9c. Figure S9d shows that the maximum $|\Delta P_{\text{SHG}}|$ varies from 43% to 25% at constant delay $\Delta\tau \approx 150$ fs when V_g increases from 0 to 100 V. These results indicate that electrical doping induces suppression of optical modulation, similar to the electrically tunable SHG behavior.¹ Electrical doping changes the Fermi level, which in turn influences the carrier occupation and thus the population of excitons.¹ Therefore, changing the doping level can eventually tune optical modulation of SHG in the material under investigation.

Fig. S9. (a) Schematic illustration of a MoS₂ field-effect transistor. (b) Source-drain current (I_{ds}) versus gate voltage (V_{gs}) when the drain voltage is fixed to $V_{ds} = 1$ V. (c) Optical modulation at different gate voltages for $\hbar\omega_{SHG} \approx 1.89$ eV. The applied seed and control light intensities are ~ 54.75 GW/cm² and ~ 17.42 GW/cm², respectively. (d) ΔP_{SHG} as a function of gate voltage when $\Delta\tau = \sim 150$ fs.

10. Preservation of MoS₂ symmetry with control light

We perform circularly-polarized SHG measurements in which circularly-polarized seed light is generated by combining a linear polarizer and a quarter-wave plate, focused on the monolayer MoS₂ with a sapphire substrate. The generated SHG is collimated with an objective lens and converted into linear polarization after going through another quarter-wave plate. Finally, a linear polarizer is employed to measure the polarization angle of the converted SHG signal.²

Fig. S10. (a) Polar plots of the normalized SHG intensity as a function of sample angle with (red curve) and without (black curve) pump excitation when the seed light is linearly polarized. (b) Circular polarization-resolved SHG spectra of the $3p$ excitonic state with excitation by a left-circularly-polarized seed laser (σ^-).

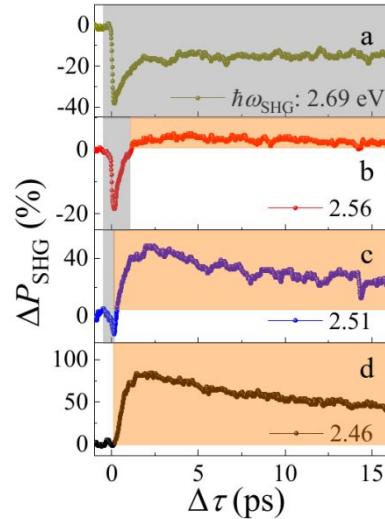

11. Comparison of measured excitonic states with previous experimental results

TABLE S1. Comparison of exciton energies in monolayer MoS₂.

Exciton	Energy from Ref. 3 (eV)	Energy from ΔP_{SHG} (eV)*	Energy from the linear reflection (eV)
$1s_A$	1.86	1.89	1.9
$2p_A$	-	-	-
$3p_A$	2.13	-	-
$1s_B$	2.01	2.0	2.05
$2p_B$	2.22	2.27	-
$3p_B$	2.37	2.36	-
$1s_C$	-	2.9	2.93

*This work

12. Sign change in the enhancement and suppression regions for various SHG wavelengths

Fig. S11. (a)-(d) ΔP_{SHG} responses when varying $\hbar\omega_{\text{SHG}}$ in the 2.46-2.69 eV range. Negative and positive signs are indicated by grey and orange regions.

13. Theoretical calculation of the change in second-order nonlinear susceptibility

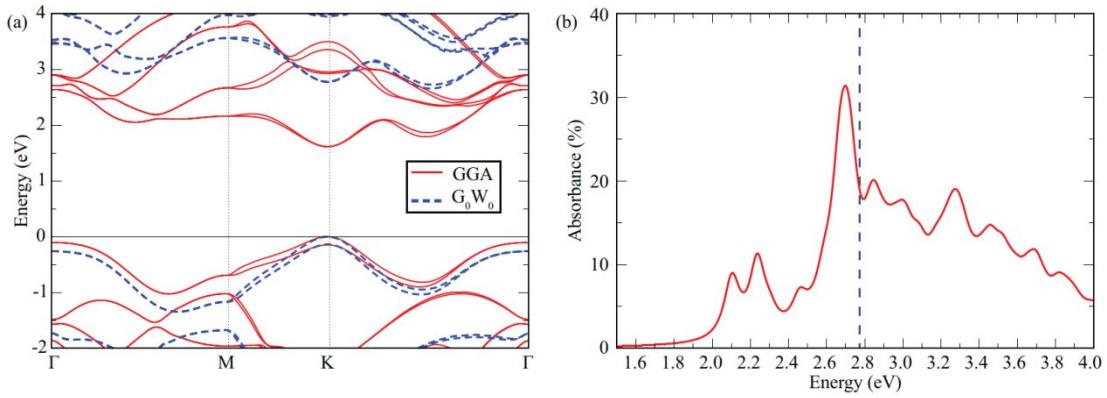
The modulation of the SHG signal before and after the arrival of a control light pulse can be explained as the change in the second-order nonlinear susceptibility of the system $\chi^{(2)}$. The power of the SHG signal generated from the seed light in the absence of control light (p_0) or in the presence of control light (p_c) can be expressed as

$$p_0 \propto (\chi_0^{(2)})^2$$

$$p_c \propto (\chi_c^{(2)})^2$$

where $\chi_c^{(2)}$ and $\chi_0^{(2)}$ are the corresponding second-order nonlinear susceptibilities of monolayer MoS₂ at the seed wavelength with and without control light, respectively.

From here, the relative change in second-order nonlinear susceptibility can be expressed as


$$\frac{\Delta\chi^{(2)}}{\chi_0^{(2)}} = \frac{\chi_c^{(2)} - \chi_0^{(2)}}{\chi_0^{(2)}} = \sqrt{\frac{p_c}{p_0}} - 1$$

In the enhancement region, we find a maximum relative change in second-order nonlinear susceptibility of ~ 19 .

14. Supplementary theoretical elements in the analysis of SHG modulation

We use the GW-BSE method to calculate the absorption spectrum of monolayer MoS₂. This method yields reliable predictions for the excited-state properties of ultra-thin transition metal dichalcogenides.^{4,5} In Fig. S12a, we represent the electronic band structure calculated within the GGA and G₀W₀ approximations for monolayer MoS₂, showing that inclusion of quasiparticle energy corrections to the Kohn-Sham eigenvalues (i.e., when moving from GGA to G₀W₀) leads to a direct band gap of 2.77 eV at the K point.

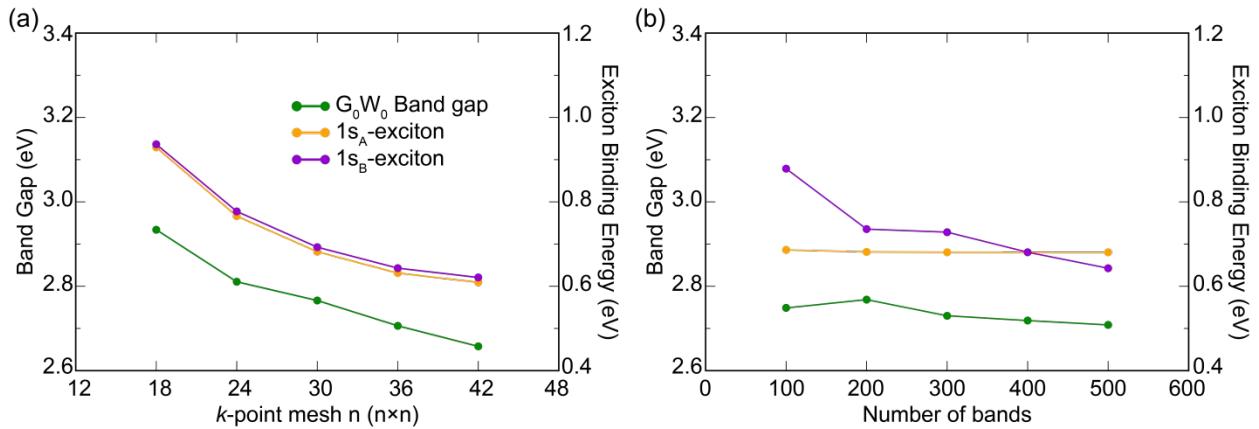

We obtain the absorbance spectrum of monolayer MoS₂ from the imaginary part of the dielectric function, as shown in Fig. S12b, which reveals several excitonic features located below the band gap of the material with high oscillator strengths. A comparison of the spectral peak positions of the experimentally observed and theoretically predicted bright excitonic states is presented in Table S2. The 0.25 eV redshift of the calculated peak positions relative to experiment can be attributed to the error margin of the GW-BSE approach.⁶ In addition, we show the variation of band gap and binding energy of the two lowest-energy excitons (1s_A and 1s_B) with respect to the size of the *k*-point mesh and the number of bands in Fig. S13.

Fig. S12. (a) Electronic bands of monolayer MoS₂ calculated in the GGA and G_0W_0 approximations. (b) Absorbance of monolayer MoS₂ computed within the G_0W_0 -BSE approximation.

TABLE S2. Comparison of experimental and theoretical exciton energies in monolayer MoS₂.

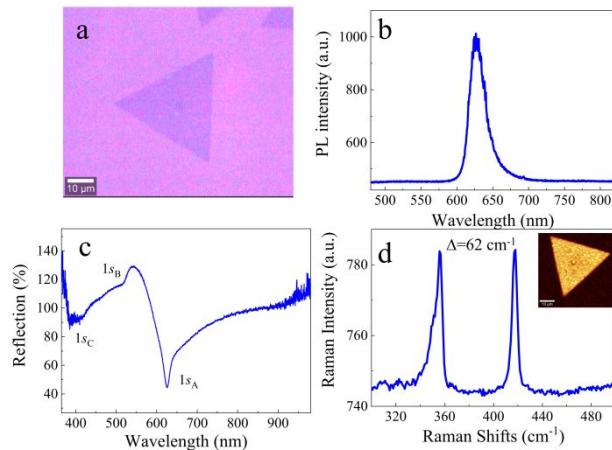
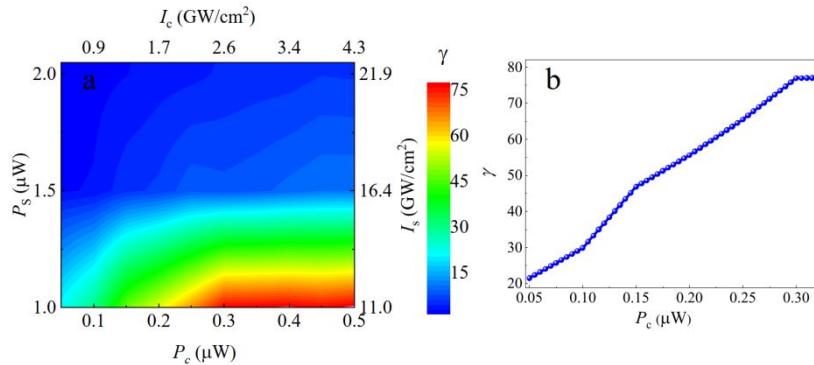
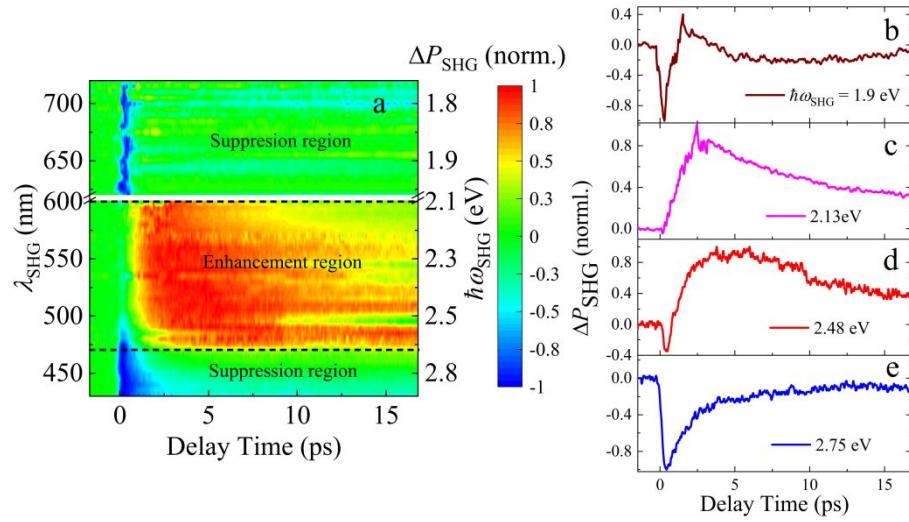

	1s_A	1s_B	2p_A	2s	3p_A	2p_B	3s	3p_B
Bright(B)/Dark(D)	B	B	D ₁	B	D ₂	D ₃	B	D ₄
Experiment (eV)	1.85	2.00	-	2.19	-	2.27	2.36	2.37
Calculation (eV)	2.10	2.24	2.37	2.44	2.46	2.52	2.59	2.59

Fig. S13. Convergence of the direct band gap at the K-point and the binding energies of $1s_A$ and $1s_B$ excitons with respect to (a) the size of the k -point mesh and (b) the number of bands. In each panel, left and right scales show the band gap and exciton binding energies, respectively.

15. SHG modulation with monolayer WS₂


A typical WS₂ sample characterization is shown in Fig. S14.


Fig. S14. CVD WS₂ sample characterization. (a) Optical image. (b) Photoluminescence spectrum. (c) Optical reflectance. (d) Raman spectrum with an excitation wavelength of 488 nm. Inset: Raman map of the 336 cm^{-1} shifted peak.

Our measurements of SHG modulation in WS_2 are carried out with the same system employed for MoS_2 using control light of 400 nm wavelength (3.1-eV photon energy). Figure S15a shows the dependence of SHG enhancement γ on the power of control and seed light (1170 nm, 1.05 eV). Clearly, the SHG enhancement factor γ increases with increasing control light power, whereas it decreases with increasing seed light power. Figure S15b shows γ as a function of control light power when the seed light power is 1 μW , from which we conclude that γ can be as high as ~ 76 when the control light power is 0.3 μW .

The normalized ΔP_{SHG} is shown in Fig. S16 as a function of time delay for different seed light wavelengths. The incident powers of the seed light and control light are 3 μW and 0.3 μW , respectively. As shown in Fig. S16a, the time-resolved ΔP_{SHG} dynamics with various SHG energies clearly reveals the presence of suppression, transition, and enhancement regions. The results of SHG modulation presented in Fig. S16b-e show very similar dynamics when compared to those for MoS_2 at different regions.

Fig. S15. (a) SHG enhancement factor γ as a function of input power/peak-intensity of the control (P_c, I_c) and seed (P_s, I_s) light in WS_2 . (b) γ as a function of control light power for a seed light power of 1 μW .

Fig. S16. All-optical modulation dynamics in monolayer WS₂. (a) Normalized SHG power change ΔP_{SHG} as a function of time delay and SHG photon wavelength/energy. The breaking region signals the overlap between difference frequency generation and SHG. (b)-(e) ΔP_{SHG} dynamics for $\hbar\omega_{\text{SHG}} = 1.9, 2.13, 2.48$, and 2.75 eV, respectively.

TABLE S3. Comparison of exciton energies in monolayer WS₂.

	1s _A	2p	1s _B	3p	4p	T
Ref. S5	2.04	2.28	2.45	2.48		10k
Ref. S7	2.12	*	2.50	*	*	10k
Ref. S7	2.02	*	2.40	2.45	2.58	300k
Linear	1.98	*	2.39	*	*	300k
ΔP_{SHG}	1.98	2.11	*	2.43	2.58	300k

Supplementary References

(S1) Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S.; Yan, J.; Mandrus, D. G.; Yao, W.; Xu, X., Electrical control of second-harmonic generation in a WSe₂ monolayer transistor. *Nat. Nanotechnol.* **2015**, *10* (5), 407-11.

(S2) Zhang, D.; Zeng, Z.; Tong, Q.; Jiang, Y.; Chen, S.; Zheng, B.; Qu, J.; Li, F.; Zheng, W.; Jiang, F.; Zhao, H.; Huang, L.; Braun, K.; Meixner, A. J.; Wang, X.; Pan, A., Near-Unity Polarization of Valley-Dependent Second-Harmonic Generation in Stacked TMDC Layers and Heterostructures at Room Temperature. *Adv. Mater.* **2020**, *32* (29), e1908061.

(S3) Cha, S.; Sung, J. H.; Sim, S.; Park, J.; Heo, H.; Jo, M. H.; Choi, H., 1s-intraexcitonic dynamics in monolayer MoS₂ probed by ultrafast mid-infrared spectroscopy. *Nat. Commun.* **2016**, *7*, 10768.

(S4) Qiu, D. Y.; da Jornada, F. H.; Louie, S. G., Optical spectrum of MoS₂: many-body effects and diversity of exciton states. *Phys. Rev. Lett.* **2013**, *111* (21), 216805.

(S5) Ye, Z.; Cao, T.; O'Brien, K.; Zhu, H.; Yin, X.; Wang, Y.; Louie, S. G.; Zhang, X., Probing excitonic dark states in single-layer tungsten disulphide. *Nature* **2014**, *513*, 214.

(S6) Molina-Sanchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L., Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS₂. *Phys. Rev. B* **2013**, *88* (4), 045412.

(S7) Zhu, B.; Chen, X.; Cui, X., Exciton binding energy of monolayer WS₂. *Sci Rep-Uk* **2015**, *5*, 9218.