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ABSTRACT: Most van der Waals crystals present highly anisotropic optical responses due to their 

strong in-plane covalent bonding and weak out-of-plane interactions. However, the determination 

of the polarization-dependent dielectric constants of van der Waals crystals remains a nontrivial 

task, since the size and dimension of the samples are often below or close to the diffraction limit 

of the probe light. In this work, we apply an optical nano-imaging technique to determine the 

anisotropic dielectric constants in representative van der Waals crystals. Through the study of both 

ordinary and extraordinary waveguide modes in real space, we are able to quantitatively determine 

the full dielectric tensors of nanometer-thin molybdenum disulfide and hexagonal boron nitride 

microcrystals, the most-promising van der Waals semiconductor and dielectric. Unlike traditional 

reflection based methods, our measurements are reliable below the length scale of the free-space 

wavelength and reveal a universal route for characterizing low dimensional crystals with high 

anisotropies. 
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Introduction 

Symmetry breaking and intrinsic anisotropy are commonplace in low dimensional materials1. 

This is especially the case in two-dimensional (2D) van der Waals (vdW) crystals2, where the 

strong in-plane covalent bonds and weak out-of-plane vdW forces naturally lead to highly 

anisotropic material properties. For example, the marked optical or electronic anisotropy has led 

to renowned investigations of hyperbolic dispersion in hexagonal boron nitride (h-BN)3-7, linear 

dichroism in black phosphorus8-10, spin-dependent relaxation in graphene11-13, and valley 

polarization in molybdenum disulfide (MoS2)14,15. By stacking 2D vdW crystals layer-by-layer 

into heterostructures (vdWHs)16-19, a series of novel optoelectronic and photonic applications have 

been demonstrated as well, including light-emitting diodes20,21, plasmonic waveguides22-24, and 

photodetectors25. Although in their experimental infancy26, these promising applications demand 

better identification of the anisotropic properties of various building blocks of vdWHs, to facilitate 

the rational design and optimization of vdWHs-based devices. 

The optical anisotropy in vdW crystals, especially between the in-plane and out-of-plane 

directions, is challenging to measure. It is more so in the case of mechanically exfoliated crystals, 

which are known to possess superior crystalline qualities. The typical size of the exfoliated vdW 

crystals can be of the order of a few microns, which prohibits most of the common diffraction 

limited characterization techniques such as edge reflection (requiring large sample thickness and 

surface area, ~mm3-scale volume at least; in addition, fine polished cross-sectional surface is 

required to measure the out-of-plane dielectric constant)27 and ellipsometry (requiring oblique 

incident angles and large sample area, ~100×55 μm2 at least)28. Therefore, it is a nontrivial task to 

obtain the intrinsic polarization-dependent optical properties of high-quality vdW crystals. A novel 
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method is highly desired for evaluating and quantifying the optical anisotropy of nanometer-thin 

vdW microcrystals. 

In this work, we elaborate on a method for characterizing the optical anisotropy of nanometer-

thin vdW microcrystals. Using a scattering-type scanning near-field optical microscope (s-SNOM), 

the full dielectric tensor of vdW nanoflakes can be quantitatively extracted from real-space 

mapping of the ordinary and extraordinary waveguide modes. With this method, we report the first 

measurement of the dielectric tensor of MoS2 microcrystals (In-plane/Out-of-plane permittivity is 

20.25/9.61) in the near-infrared region (wavelength λ =1530 nm). By extending the working 

wavelength to the visible region (wavelength λ =632.8 nm), the optical anisotropy of h-BN can 

also be characterized (In-plane/Out-of-plane permittivity is 5.33/2.99) and compared to the 

previous reported results. This work breaks the experimental bottleneck necessitating large-size 

samples in order to characterize the polarization-dependent optical properties of low-dimensional 

vdW crystals. 

Results 

Theoretical foundation for the method. Since MoS2 is a uniaxial vdW crystal with its optic axis 

c perpendicular to the basal plane (Supplementary Fig. 1), its relative dielectric tensor can be 

written as 
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where ε⊥  is the in-plane relative dielectric constant (perpendicular to the optic axis), and εP is the 

out-of-plane relative dielectric constant (parallel to the optic axis). In analogy with the ordinary 

and extraordinary rays in the bulk anisotropic crystals29, it can be proved theoretically 
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(Supplementary Note 1) that there are ordinary and extraordinary waveguide modes propagating 

in the anisotropic MoS2 nanoflakes. The eigenequations of the waveguide modes can be written as 
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respectively (Supplementary Note 2). In equation 2 and 3, 0 2 /k π λ=  is the free-space wavevector; 

oβ  and eβ  are the in-plane wavevectors for ordinary and extraordinary waveguide modes, 

respectively; d  is the thickness of MoS2 nanoflakes; 1ε  and 2ε  are relative dielectric constants of 

the isotropic superstrate and substrate, respectively; m  and n  are the order numbers (non-negative 

integers) of ordinary and extraordinary waveguide modes, respectively. According to the two 

transcendental equations above, the ordinary waveguide modes are transverse electric (TE) 

polarized, and their in-plane wavevectors are only related to the in-plane relative dielectric 

constant of MoS2; the extraordinary waveguide modes are transverse magnetic (TM) polarized, 

and their in-plane wavevectors are related to the in-plane and out-of-plane relative dielectric 

constants. Therefore, once the in-plane wavevectors of both the ordinary and extraordinary 

waveguide modes are determined for at least two MoS2 nanoflakes with different thicknesses, the 

in/out-of-plane relative dielectric constants can be found explicitly utilizing equation 2 and 3. 

Experimental verification of the imaging principle. In this work, the atomic force microscope 

(AFM) based s-SNOM with nanoscale spatial resolution is employed to simultaneously acquire 
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both the sample thickness and the in-plane wavevectors required by equation 2 and 3. The 

experimental setup and imaging principle are illustrated in Figure 1a and 1b. 

As shown in Figure 1a, the MoS2 nanoflakes on SiO2/Si substrates are preferentially oriented 

under the s-SNOM such that the sharp edges of the nanoflakes (coincident with the Y axis) are 

parallel to the AFM cantilever. The AFM cantilever can be used as a reference to infer geometric 

factors: the angle between the illumination wavevector 0k  and its projection xyk  in the X-Y plane 

(coincident with the sample surface) is α =38°; the angle between xyk  and the investigated sample 

edge is β =60° (indicated in the top view). The near-infrared laser atλ =1530 nm with 3 µm spot 

size was focused onto the apex of the s-SNOM tip to excite both ordinary and extraordinary 

waveguide modes in the MoS2 nanoflakes. These modes can propagate in the MoS2 nanoflakes as 

cylindrical waves, get scattered into the far-field as free-space light at the sample edges or, in 

principle, back-reflected. Because their in-plane wavevectors are far smaller than those of the 

graphene surface plasmon polaritons (SPPs)30,31 and h-BN surface phonon polaritons (SPhPs)32, 

back-reflection of the waveguide modes at the sample edges is fairly insufficient compared to those 

previously studied cases33,34. Therefore, the acquired s-SNOM images are dominated by the 

interference fringe patterns formed between the tip scattered light and the edge scattered light as 

illustrated in Figure 1b, implying significant dependence on the sample edge orientation. This 

makes the imaging principle of the waveguide modes different from those for graphene SPPs and 

h-BN SPhPs, where the resulting s-SNOM images are standing wave patterns formed by the 

incident and reflected surface waves, exhibiting no dependence on the sample edge orientation. 

Due to the asymmetry introduced by the incident angle, the optical path difference (OPD) between 

the tip scattered light s (O')E  and the left side edge scattered light s (O'')E  is different from that 
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between s (O')E  and the right side edge scattered light s (O)E  (Note that the edge scattered light in 

the vicinity of O and O'' has the major contribution to the near-field contrast since the net scattering 

from all the other points will be diminished due to the in-plane symmetry and destructive 

interference). Therefore the fringe spacing at the left half of the resulting s-SNOM image LΛ  is 

different from RΛ  at the right half. Based on the simple geometry in Figure 1a, the genuine in-

plane wavevectors of ordinary and extraordinary waveguide modes of MoS2 nanoflakes, o,eβ , can 

be extracted either from the left side apparent wavevector L L2 /k π= Λ  as 

 o,e 0
L

2 cos sinkπβ α β= +
Λ

,  (4) 

or from the right side apparent wavevector R R2 /k π= Λ  as 

 o,e 0
R

2 cos sinkπβ α β= −
Λ

.  (5) 

We first demonstrate the validity of the above imaging principle experimentally with an 81-nm-

thick MoS2 sample placed in the same orientation as in Figure 1a, i.e. β =60° (see Supplementary 

Fig. 2 for AFM images and height profiles). The real-space s-SNOM image together with the 

corresponding fringe profile is shown in the upper panel of Figure 1c. As expected, the fringe 

spacings are different at the opposite edges: the spacing at the left edge is 747 nm (corresponding 

to an apparent in-plane wavevector L 02.048k k= ), while at the right it is 448 nm ( R 03.415k k= ). 

The wavevector information can be represented more clearly in the momentum space as shown in 

the upper panel of Figure 1d by imposing a Fourier transform (FT) on the real-space fringe profile 

(see Supplementary Fig. 3 for detailed data processing method). The frequency peaks at the local 

maxima correspond to the apparent in-plane wavevectors Lk  and Rk  derived from the spatial 
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domain, and their frequency difference coincides with the theoretical value 01.365k  given by 

equation 4 and 5. When β  is reduced to 35° via sample rotation, a smaller (larger) fringe spacing 

at the left (right) edge is observed (lower panel of Figure 1c) and the frequency difference between 

Lk  and Rk  is decreased (lower panel of Figure 1d). More importantly, experiments at different

β ’s produce the same in-plane wavevector 02.735k  for the waveguide mode in the same sample, 

validating the rigorous parameter extraction procedure. Therefore, we have established a self-

consistent method to measure the in-plane wavevectors of waveguide modes propagating in the 

nanometer-thin vdW microcrystals using s-SNOM. 

Extraction of the dielectric tensor from real-space images. Since the MoS2 nanoflake in Figure 

1c is relatively thin, it supports only one waveguide mode – the fundamental ( 0m = ) ordinary 

mode, i.e. the TE0 mode. For thicker MoS2 flakes, two and more distinct modes can be observed. 

For example, in a 103-nm-thick MoS2 flake, a fundamental extraordinary mode (TM0 mode) and 

a trivial low-frequency air mode are evident in addition to the TE0 mode (Figure 2). The 

wavevector of the trivial air mode equals 0 (1 cos sin )k α β+ , and does not shift with the increasing 

sample thickness. The apparent wavevectors of the TM0 and TE0 modes are thickness-dependent, 

which shift towards higher frequencies and eventually separate themselves from the air modes as 

the sample thickness is increased above ~150 nm, as shown in Figure 2b. 

The TE0 mode provides an in-plane wavevector R 0 cos sink k α β− . By substituting the two sets 

of experimental data ( 1d =81 nm, o1 02.735kβ = ; 2d =103 nm, o2 03.06kβ = ) into equation 2, we 

get the in-plane dielectric constant 20.25ε⊥ =  and the TE mode order number 0m = . Similarly, 

the in-plane wavevectors of the TM0 modes are determined to be 01.733k  and 02.007k  for the 
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170-nm-thick and 198-nm-thick samples, respectively. By substituting these two sets of data ( 3d

=170 nm, e1 01.733kβ = ; 4d =198 nm, e2 02.007kβ = ) into equation 3, one can get the out-of-plane 

dielectric constant 9.61ε =P  and the TM mode order number 0n = . Therefore, the relative 

dielectric tensor of MoS2 governing its optical anisotropy at the important optical communication 

wavelength 1530 nm can be quantitatively determined to be 

 
20.25 0 0

0 20.25 0
0 0 9.61

ε
 
 =  
  

,  (6) 

which clearly demonstrates that the MoS2 nanoflakes are indeed negative crystals since the 

extraordinary index of refraction ( e 3.1n ε= =P ) is less than the ordinary one ( o 4.5n ε⊥= = ). 

Note that we choose to calculate the out-of-plane (in-plane) dielectric constant using the thicker 

(thinner) samples because the corresponding wavevectors are the most prominent with those 

thicknesses, yielding a more accurate parameter extraction. The experimentally obtained dielectric 

tensor of MoS2 is in very good agreement with theoretical values by first principle calculations 

( 16.8,  9.0ε ε⊥ = =P , note that these are stationary values calculated at long wavelength limit; at 

1530 nm, the values are indeed expected to be larger)35,36. 

Discussion 

As demonstrated above, to disentangle the in-plane and the out-of-plane dielectric constants and 

quantify the full dielectric tensor of the investigated vdW microcrystals, one has to image both TE 

polarized ordinary and TM polarized extraordinary waveguide modes. The aperture-type SNOM 

(a-SNOM) has been widely used in the waveguide mode imaging as demonstrated in the previous 

works37,38. Compared to a-SNOM, we suggest using s-SNOM to study the anisotropy of low-
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dimensional vdW microcrystals is preferred due to its wavelength-independent high spatial 

resolution (~10 nm) and ultra-broadband compatibility. However, imaging the TE modes with s-

SNOM is not a routine work since it has been long believed that s-SNOM can only effectively 

excite and pick up the TM polarized near-field signals due to the elongated tip geometry 

perpendicular to the sample surface. Nevertheless, we managed to image the TE polarized 

waveguide modes for the first time. The imaging capability of the s-SNOM for TE polarized modes 

remained undiscovered in the past mostly because the s-SNOM has been applied mainly in the 

mid-infrared region where the TM-polarized field dominates the near-field scattering signal39. In 

addition, the surface or waveguide modes such as graphene SPPs30,31 and h-BN SPhPs32 

investigated in the previous s-SNOM experiments are exclusively TM polarized. The s-SNOM 

imaging of TE polarized waveguide modes in this work can be attributed to the reduced working 

wavelength in the visible and near-infrared frequency ranges, where the tip geometry 

perpendicular to the sample surface is less important for determining the scattered near-field signal 

(in contrast, a spheroidal finite-dipole description is required in the mid-infrared as a result of the 

long working wavelength)40. 

We calculated the thickness dispersions of the fundamental ordinary (TE0) and extraordinary 

(TM0) waveguide modes in the air-MoS2-SiO2 three-layer waveguide using equations 2 and 3 by 

assuming the superstrate air and the substrate SiO2 are both semi-infinite and taking their isotropic 

dielectric constants to be 1.00 and 2.15 at the 1530 nm wavelength41, respectively. The calculation 

results shown in Figure 3a agree well with the in-plane wavevectors of the fundamental ordinary 

waveguide mode (TE0) in the 170-nm-thick and 198-nm-thick MoS2 samples (extracted from 

Figure 2b). The slight deviation between the experimental and the simulated wavevector values 

for the 103-nm-thick sample is caused by the uncertainty in reading the position of the TM0 peak 
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in Figure 2b due to the air-TM0 modes overlapping mentioned above. Figure 3a indicates the cut-

off thicknesses for TE0 and TM0 modes in the air-MoS2-SiO2 asymmetrical waveguide are about 

15 nm and 85 nm, respectively. Waveguides with MoS2 thickness larger than 85 nm can support 

both TE0 and TM0 modes; waveguides with MoS2 thickness in the interval between 15 and 85 nm 

can only support the TE0 mode; and when the MoS2 layer is thinner than 15 nm it cannot support 

any mode. The theoretically predicted cut-off of the fundamental extraordinary waveguide mode 

below the thickness of 85 nm explains the observed single mode behavior of the 81-nm-thick 

sample shown in Figure 2b. Thus, all the experimental results are in good agreement with each 

other in the framework of anisotropic waveguide theory. 

The cut-off behaviors of the ordinary and extraordinary modes in asymmetrical waveguides 

(superstrate and substrate are of different dielectric constants, 1 2ε ε≠ ) seemingly set a lower limit 

for the sample thickness we can investigate (Figure 3a). However, the theoretical calculations 

demonstrate that the cut-off thicknesses of the fundamental modes decrease with the increasing 

degree of symmetry of the MoS2 waveguide (Supplementary Fig. 4); when the waveguide is 

perfectly symmetrical ( 1 2ε ε= ) the fundamental modes do not cut off. Thus, by suspending the 

samples to eliminate the asymmetry, we can reduce this cut-off thickness for the fundamental 

waveguide modes. As shown in Figure 3b, the in-plane wavevectors of both the ordinary and 

extraordinary fundamental modes approach the free-space wavevector asymptotically with the 

decreasing sample thickness, thus probing the optical anisotropies of few-layer or even monolayer 

samples utilizing our method is possible if the unwanted air mode can be suppressed. This is indeed 

probable since the air mode becomes weaker with the decreasing sample thickness as shown in 

Figure 2b. 
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The contrast of the near-field images also has strong sample thickness dependence and is 

expected to fade out completely for samples much thicker than 200 nm (Figure 2a and Figure 3c). 

With increasing MoS2 sample thickness, the normalized electric field profile (Supplementary Note 

3) of the fundamental ordinary mode shifts into the substrate, coupling much less with the s-SNOM 

tip-induced hot spot at the sample surface (see inset of Figure 3c). This results in a decreased 

excitation efficiency of the waveguide mode and subsequent loss of interference visibility (i.e. 

image contrast). This fringe visibility of the lower order modes sets an upper limit for the sample 

thickness. For high order modes, however, the evanescent fields extend much further out the 

sample surface, leading to higher excitation efficiencies and therefore enhanced interference 

visibilities with thicker samples (Supplementary Fig. 5 and Fig. 6). Generally speaking, the number 

of waveguide modes increases with the thickness of the MoS2 layer. For a waveguide with a 1000-

nm-thick MoS2 layer, there are five TE modes (m=0~4) and five TM modes (n=0~4) 

(Supplementary Fig. 7) available for near-field imaging. Therefore, the sample thickness in our 

method is only limited by the maximum height measurement range of the AFM embedded in our 

s-SNOM (~1000 nm). 

The last feature that cannot be overlooked in our experimental results is the unbalanced mode 

strength ratio between the fundamental ordinary and extraordinary modes in the momentum-space 

spectra as shown in Figure 2b. To explain this phenomenon, we have to take the finite SiO2 

substrate thickness (typical value 300 nm) into consideration because the waveguide modes tend 

to leak out through the SiO2 layer into the high refractive index Si layer below. As shown in Figure 

3d, the extraordinary mode (blue curve) in the 170-nm-thick MoS2 sample retains a stronger 

electric field at the virtual SiO2/Si interface than the ordinary mode (black curve), and hence 

experiences much higher dissipation during propagation42 which manifests as a low and broad 
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peak in the momentum space. Therefore, we can reduce the transmission loss of the extraordinary 

mode by increasing the thickness of the SiO2 layer, which narrows its corresponding peak in the 

momentum space. This allows a more accurate determination of the out-of-plane dielectric 

constant by reducing the uncertainty in the peak position fitting procedure. 

The application of our method can also be validated for other vdW crystals as long as their 

transparent or low-loss frequency windows are known. For example, optical anisotropy of h-BN 

at the wavelength 632.8 nm has been investigated. Two h-BN samples with the thicknesses 75 nm 

and 230 nm are analyzed as shown in Figure 4a and 4b, respectively (see also Supplementary Fig. 

8 and Fig. 9). As shown in Figure 4a, Fourier analysis of the left-half of the fringe profile produces 

an air mode located at 00.335k , indicating a different incident angle 39.8α = °  for the visible laser 

from the one for the near-infrared laser (38° ), this is quite reasonable since the visible and the 

near-infrared lasers cannot be in perfect alignment in the s-SNOM. Analysis of the other two peaks 

(TE0) in Figure 4a using equation 4 and 5 produces the same in-plane wavevector ( 01.68k ) for the 

fundamental ordinary mode propagating in the 75-nm-thick h-BN sample; taking the small incline 

angles of the sample edges shown in Supplementary Fig. 9 into consideration, we can derive the 

in-plane wavevectors from Figure 4b for the fundamental ordinary and extraordinary waveguide 

modes propagating in the 230-nm-thick h-BN sample ( 02.113k  and 01.556k , respectively) as well. 

Thus the in-plane and out-plane relative dielectric constants of h-BN at 632.8 nm are determined 

to be 5.33 and 2.99, respectively, corresponding to an ordinary refractive index on =2.31 and an 

extraordinary refractive index en =1.73, respectively. The experimentally obtained refractive 

indices are slightly larger than those previously reported in artificially synthesized BN sample 

( o e2.13,  1.65n n= = )43, probably because the polycrystalline and porous structure of the artificial 
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BN sample used in the previous work tends to lower the refractive indices44 as compared with the 

intrinsic ones of the mechanically cleaved monocrystals used in this work. 

The investigated MoS2 and h-BN samples in this work are uniaxial crystals. Nevertheless, this 

method can be applied to the much more complicated biaxial vdW crystals. To this end, one has 

to determine the two in-plane principal axes for the biaxial crystals by other techniques like Raman 

spectroscopy45 and second-harmonic generation (SHG)46. Waveguide mode imaging can be 

performed at the two sharp edges perpendicular to the two principal axes, naturally formed while 

crystal growth or machined using microfabrication techniques. The in-plane dielectric constant 

associated with each principal axis can be extracted following the same procedure used in the 

uniaxial vdW crystals characterization. 

When properly mapped and characterized, the waveguide modes propagating in 2D materials 

can be a convenient way to determine the in-plane and out-of-plane dielectric constants. By 

employing near-field scanning methods, our work overcomes the challenge of measuring small-

size samples of vdW crystals and provides two specific yet universally relatable examples in MoS2 

and h-BN. The variations of the current method can lead to practical solutions for probing samples 

of in-plane anisotropy and few-layer or monolayer thickness. Further investigations will allow us 

to address important material properties at the nanoscale, such as the local dielectric properties 

around crystalline defects or the sub-wavelength polaritonic interactions in anisotropic nano-

devices.  
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Methods 

Sample Preparation 

Silicon wafers with 300-nm-thick SiO2 top layer were used as substrates for all the samples. The 

MoS2 and h-BN microcrystals of various thicknesses were exfoliated from bulk samples. 

Near-field Optical Measurement 

The nano-imaging experiments described in the main text were performed using a commercial 

s-SNOM (www.neaspec.com). The s-SNOM is based on a tapping-mode AFM illuminated by 

monochromatic lasers of the wavelength 1530 nm or 632.8 nm (www.toptica.com). The near-field 

images were registered by pseudo-heterodyne interferometric detection module with tip tapping 

frequency around 270 kHz, the tip tapping amplitudes are 50 nm for the 1530-nm-wavelength 

experiments and 30 nm for the 632.8-nm-wavelength experiments. By demodulating the optical 

signal at the third order harmonic of the tip tapping frequency, the noise from the background and 

stray light can be greatly suppressed. The spot sizes of the visible (632.8 nm) and near-infrared 

(1530 nm) beam at the focus under the AFM tip are approximately 1.5 μm and 3 μm, respectively, 

which are in favor of the tip-launching and edge-scattering detection scheme proposed in this 

research. Although there are certain areas near the edges where edge-launched waveguide modes 

exist, we can remove this edge effect in the data processing by windowing the real-space fringe 

profiles in the Fourier transform. 

Data Availability 

The data that support the findings of this study are available from the corresponding authors 

upon reasonable request.  

http://www.neaspec.com/
http://www.toptica.com/


 16 

References 

 1 Li, Q. et al. Anisotropic Nanomaterials: Preparation, Properties, and Applications; Springer: 2015. 
 2 Novoselov, K. S. et al. Two-dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451-10453 

(2005). 
 3 Caldwell, J. D. et al. Sub-diffractional Volume-confined Polaritons in the Natural Hyperbolic Material 

Hexagonal Boron Nitride. Nat. Commun. 5, 5221 doi:10.1038/ncomms6221 (2014). 
 4 Dai, S. et al. Subdiffractional Focusing and Guiding of Polaritonic Rays in a Natural Hyperbolic Material. 

Nat. Commun. 6, 6963 doi:10.1038/ncomms7963 (2015). 
 5 Li, P. et al. Hyperbolic Phonon-polaritons in Boron Nitride for Near-field Optical Imaging and Focusing. 

Nat. Commun. 6, 7507 doi:10.1038/ncomms8507 (2015). 
 6 Yoxall, E. et al. Direct Observation of Ultraslow Hyperbolic Polariton Propagation with Negative Phase 

Velocity. Nat. Photon. 9, 674-678 (2015). 
 7 Narimanov, E. E. et al. Metamaterials: Naturally Hyperbolic. Nat. Photon. 9, 214-216 (2015). 
 8 Xia, F. et al. Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and 

Electronics. Nat. Commun. 5, 4458 doi:10.1038/ncomms5458 (2014). 
 9 Qiao, J. et al. High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phosphorus. 

Nat. Commun. 5, 4475 doi:10.1038/ncomms5475 (2014). 
10 Yuan, H. et al. Polarization-sensitive Broadband Photodetector Using a Black Phosphorus Vertical p-n 

Junction. Nat. Nanotech. 10, 707-713 (2015). 
11 Tombros, N. et al. Anisotropic Spin Relaxation in Graphene. Phys. Rev. Lett. 101, 046601 (2008). 
12 Han, W. et al. Graphene Spintronics. Nat. Nanotech. 9, 794-807 (2014). 
13 Raes, B. et al. Determination of the Spin-lifetime Anisotropy in Graphene Using Oblique Spin Precession. 

Nat. Commun. 7, 11444 doi:10.1038/ncomms11444 (2016). 
14 Zeng, H. et al. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotech. 7, 490-493 

(2012). 
15 Mak, K. F. et al. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotech. 7, 

494-498 (2012). 
16 Geim, A. K. et al. van der Waals Heterostructures. Nature 499, 419-425 (2013). 
17 Novoselov, K. S. et al. 2D Materials and van der Waals Heterostructures. Science 353, 462-472 (2016). 
18 Liu, Y. et al. van der Waals Heterostructures and Devices. Nat. Rev. Mater. 1, 16042 

doi:10.1038/natrevmats.2016.42 (2016). 
19 Jariwala, D. et al. Mixed-dimensional van der Waals Heterostructures. Nat. Mater. 16, 170-181 (2017). 
20 Withers, F. et al. Light-emitting Diodes by Band-structure Engineering in van der Waals Heterostructures. 

Nat. Mater. 14, 301-306 (2015). 
21 Palacios-Berraquero, C. et al. Atomically Thin Quantum Light-emitting Diodes. Nat. Commun. 7, 12978 

doi: 10.1038/ncomms12978 (2016). 
22 Woessner, A. et al. Highly Confined Low-loss Plasmons in Graphene–Boron Nitride Heterostructures. 

Nat. Mater. 14, 421-425 (2014). 
23 Caldwell, J. D. et al. van der Waals Heterostructures: Mid-infrared Nanophotonics. Nat. Mater. 14, 364-

366 (2015). 
24 Yang, X. et al. Far-field Spectroscopy and Near-field Optical Imaging of Coupled Plasmon-Phonon 

Polaritons in 2D van der Waals Heterostructures. Adv. Mater. 28, 2931-2938 (2016). 
25 Massicotte, M. et al. Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotech. 11, 42-

46 (2016). 
26 Castellanos-Gomez, A. et al. Why All the Fuss About 2D Semiconductors. Nat. Photon. 10, 202-204 

(2016). 
27 W, Y. L. et al. Optical Anisotropy in Layer Compounds. J. Phys. C: Solid State Phys. 6, 551-565 (1973). 
28 Weber, J. W. et al. Optical Constants of Graphene Measured by Spectroscopic Ellipsometry. Appl. Phys. 

Lett. 97, 91901-91904 (2010). 
29 Born, M. et al. Principles of Optics; Cambridge University Press: Cambridge, U.K., 1999. 
30 Fei, Z. et al. Gate-tuning of Graphene Plasmons Revealed by Infrared Nano-imaging. Nature 487, 82-85 

(2012). 
31 Chen, J. et al. Optical Nano-imaging of Gate-tunable Graphene Plasmons. Nature 487, 77-81 (2012). 
32 Dai, S. et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. 



 17 

Science 343, 1125-1129 (2014). 
33 Kang, J. et al. Goos-Hänchen Shift and Even–odd Peak Oscillations in Edge-reflections of Surface 

Polaritons in Atomically Thin Crystals. Nano Lett. 17, 1768-1774 (2017). 
34 Hu, F. et al. Imaging Exciton–Polariton Transport in MoSe2 Waveguides. Nat. Photon. 11, 356-360 

(2017). 
35 Kumar, A. et al. Tunable Dielectric Response of Transition Metals Dichalcogenides MX2 (M=Mo, W; 

X=S, Se, Te): Effect of Quantum Confinement. Physica B. 407, 4627-4634 (2012). 
36 Kumar, A. et al. A First Principle Comparative Study of Electronic and Optical Properties of 1H – MoS2 

and 2H – MoS2. Mater. Chem. Phys. 135, 755-761 (2012). 
37 Bozhevolnyi, S. I. et al. Near-field Characterization of Photonic Crystal Waveguides. Semicond. Sci. Tech. 

21, R1-R16 (2006). 
38 Fei, Z. et al. Nano-optical Imaging of WSe2 Waveguide Modes Revealing Light-exciton Interactions. Phys. 

Rev. B 94, 081402 (2016). 
39 Knoll, B. et al. Mid-infrared Scanning Near-field Optical Microscope Resolves 30 nm. J. Microsc. 194, 

512-515 (1999). 
40 Cvitkovic, A. et al. Analytical Model for Quantitative Prediction of Material Contrasts in Scattering-type 

Near-Field Optical Microscopy. Opt. Express 15, 8550-8565 (2007). 
41 Gao, L. et al. Exploitation of Multiple Incidences Spectrometric Measurements for Thin Film Reverse 

Engineering. Opt. Express 20, 15734-15751 (2012). 
42 Hu, J. et al. Understanding Leaky Modes - Slab Waveguide Revisited. Adv. Opt. Photonics 1, 58-106 

(2009). 
43 Ishii, T. et al. Growth of Single Crystals of Hexagonal Boron Nitride. J. Cryst. Growth 61, 689-690 (1983). 
44 Franke, E. et al. In Situ Infrared and Visible-light Ellipsometric Investigations of Boron Nitride Thin Films 

at Elevated Temperatures. J. Appl. Phys. 84, 526-532 (1998). 
45 Chenet, D. A. et al. In-plane Anisotropy in Mono- And Few-layer ReS2 Probed by Raman Spectroscopy 

and Scanning Transmission Electron Microscopy. Nano Lett. 15, 5667-5672 (2015). 
46 Li, Y. et al. Probing Symmetry Properties of Few-layer MoS2 and h-BN by Optical Second-harmonic 

Generation. Nano Lett. 13, 3329-3333 (2013). 
 

  



 18 

Acknowledgements 

This work is supported by the National Basic Key Research Program of China (No. 

2015CB932400 and 2016YFA0202000), the National Natural Science Foundation of China (No. 

51372045, 11504063, and 11674073), the key program of the bureau of Frontier Sciences and 

Education Chinese Academy of Sciences (No. QYZDB-SSW-SLH021). Z.P.S. acknowledges 

funding from the Academy of Finland (No. 276376, 284548, 295777, 304666), TEKES (OPEC), 

and the European Union's Seventh Framework Program (No. 631610). 

Author contributions 

Q.D. and M.K.L. designed and supervised the research. D.B.H. deduced the equations and 

performed the experiments. R.N.L. prepared the samples. All the authors were involved in the data 

analysis and manuscript preparation. 

Additional information 

Supplementary Information accompanies this paper can be found at 

http://www.nature.com/naturecommunications. 

Competing financial interests: The authors declare no competing financial interests. 

  

http://www.nature.com/naturecommunications


 19 

Legends for Figure 1 

Figure 1 | Schematics of the experimental setup and the near-field imaging principle. (a) Three 

dimensional schematic of the near-field setup. The sharp edges of MoS2 nanoflakes are aligned to the 

Y axis and the s-SNOM tip scans along the X axis. Inset is the top view of the experimental setup. α  

is the angle between the illumination wavevector 0k  and its projection in the X-Y plane xyk , β  is the 

angle between xyk  and the investigated sample edges. (b) Front view of the experimental setup. The 

tip-launched waveguide modes are scattered into free space at the sample edges and interfere with the 

tip-scattered light at the photodetector. (c) Near-field images and real-space fringe profiles of the 81-

nm-thick MoS2 sample with 60β = ° and 35β = ° , respectively. LΛ  is the fringe spacing at the left 

half of the near-field images while RΛ  is that at the right half. (d) Momentum-space spectra of the 

fringe profiles in c, the difference between the left and right side apparent wavevectors decreases with 

the reduction of β . 
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Legends for Figure 2 

Figure 2 | Experimental results. (a) Near-field images and real-space fringe profiles of MoS2 samples 

with different thicknesses. (b) Momentum-space spectra of fringe profiles in a. In the experiments, the 

MoS2 nanoflakes are all placed in the same orientation as in Figure 1a. The low-frequency peaks in b 

showing no thickness dependence are the trivial air modes. Note that in b the left part of the second 

spectrum (d=103 nm) is multiplied by four. 
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Legends for Figure 3 

Figure 3 | Analyses of Experimental Results. (a) Theoretical and experimental thickness dispersions 

of the fundamental ordinary (TE0) and extraordinary (TM0) waveguide modes in the air-MoS2-SiO2 

three-layer waveguide, the superstrate air, and the substrate SiO2 are assumed to be semi-infinite in the 

calculations. (b) Theoretical thickness dispersions of the fundamental ordinary (TE0) and extraordinary 

(TM0) waveguide modes in freestanding MoS2 nanoflakes. (c) Evolution of mode profiles associated 

with the fundamental ordinary waveguide mode (TE0), the inset shows a decreasing coupling factor 

between the tip-induced hot spot and the waveguide mode with increasing sample thickness. We 

assume the interval 0 nm 100 nmz≤ ≤  to be the efficient coupling region since the tip tapping 

amplitude is set to 50 nm in the experiments. (d) Normalized mode profiles of the fundamental ordinary 

(TE0) and extraordinary (TM0) waveguide modes for the 170-nm-thick MoS2 sample indicate the 

extraordinary mode retains stronger electric field at the virtual SiO2/Si interface and tends to leak out 

through the SiO2 layer. The calculations in c and d use the same air-MoS2-SiO2 three-layer waveguide 

model as in a. 
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Legends for Figure 4 

Figure 4 | Probing optical anisotropy of h-BN in the visible region. Experimental results for (a) 75-

nm-thick and (b) 230-nm-thick h-BN samples. In a, the h-BN nanoflake was placed in the same 

orientation as in Figure 1a; in b, the two opposite edges are not exactly parallel and there are small 

angles between the edges and the direction of the s-SNOM tip cantilever as shown in Supplementary 

Fig. 9b. There is a small frequency difference between the air modes in a and b because of the different 

β angles shown in Supplementary Fig. 9. Note that in b the spectrum taken at the right edge is 

multiplied by three. 
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Supplementary Note 1: Polarization States of Waves in Anisotropic Media 

The wave equation in a homogeneous non-magnetic anisotropic medium is1 

  2 2

0k    E E E ,  (1) 

where   is the relative dielectric tensor. In the coordinate system aligned to the optic axis of a 

uniaxial anisotropic crystal,   can be expressed as 
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where   is the relative dielectric constant perpendicular to the optic axis, and   is the relative 

dielectric constant parallel to the optic axis. 

Supplementary Equation (1) actually contains three equations, one for each dimension. 

Explicitly, these equations can be expressed in the matrix form as 
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  (3) 

where  , ,x y zk k kk  is the wavevector and  , ,x y zE E EE  is the electric field. For a 

homogeneous wave in the Y direction, we have 0yk  , then Supplementary Equation (3) can be 

reduced to 
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.  (4) 

For Supplementary Equation (4) to have a non-trivial solution (i.e. non-zero electric field), the 

determinant of the matrix must be zero: 
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Solving Supplementary Equation (5) we get two sets of solutions: 
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corresponding to the transverse electric (TE) polarized ordinary wave, and 
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corresponding to the transverse magnetic (TM) polarized extraordinary wave. 

Supplementary Note 2: Eigenequations for Anisotropic Planar Waveguide 

A three layer planar waveguide composed of an isotropic semi-infinite superstrate ( 1 ), an 

anisotropic guiding layer (  ) with the thickness d, and an isotropic semi-infinite substrate ( 2 ) 

is shown in Supplementary Fig. 1. The optic axis of the guiding layer is parallel to the Z axis. 

 

Supplementary Figure 1 | Schematic of a three-layer planar waveguide. The superstrate and 

substrate are both semi-infinite and optically isotropic. The optic axis of the anisotropic guiding 

layer is perpendicular to the basal plane. 
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For a waveguide mode (ordinary or extraordinary) propagating in the X direction in the three-

layer planar waveguide shown in Supplementary Fig. 1, the electric field can be expressed as 
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  (8) 

where xk   is the propagation constant of the waveguide mode (not to be confused with the 

angle in Figure 1 in the main text), g zk  . 

For the electric fields in the isotropic superstrate and substrate, Supplementary Equation (1) can 

be reduced to 
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Substituting 1E  and 2E  into Supplementary Equation (9), we get 
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Imposing Gauss’s law  1,2 0 E  on 1E  and 2E , we get 
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Imposing the Gauss’s law   0 E  on gE , we get 
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Using the Faraday’s law 0i E H , we can get magnetic fields from Supplementary Equation 

(11) and (12) 
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For a TE polarized ordinary waveguide mode, there are three field components ( , ,x y zH E H ). 

Imposing the interface conditions on xH  and yE  at the two interfaces ( 0,  -z z d  ), we get 
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which can be reformulated into 
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Substituting 1  2  and g  into Supplementary Equation (15) and let o  , we can get the 

eigenvalue equation for TE polarized ordinary waveguide modes 
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Similarly, for the TM polarized extraordinary waveguide mode ( , ,x y zE H E ), we have 
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where e  . In Supplementary Equation (16) and (17) m  and n  are non-negative integers. 
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Supplementary Note 3: Mode Profiles Normalization and Coupling Factors Calculation 

According to Poynting's theorem, the power density in the X direction carried by the ordinary 

(TE) and extraordinary (TM) waveguide modes can be expressed as 
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respectively. Thus, the ordinary and extraordinary mode profiles can be normalized as 
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respectively. Of course, Supplementary Equation (20) and (21) can be further normalized by 

dividing the maximum of ( )yE z  and ( )zE z —  max ( ), ( )y zE z E z . 

If we take the interval 0 nm 100 nmz   to be the efficient coupling region of the waveguide 

modes and the s-SNOM tip-induced hot spot, the coupling factors can be defined as 
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and 
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for the ordinary and extraordinary modes, respectively.  
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Supplementary Figure 2 | AFM images and height profiles for MoS2 samples of different 

thicknesses. (a) d=81 nm; (b) d=103 nm; (c) d=170 nm; (d) d=198 nm. 
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Supplementary Figure 3 | The schematic diagram of using a window function to suppress the 

edge effect in Fourier transform. (a) Subtract the average value of the whole profile from the 

original data to suppress the DC component in the momentum-space spectra, the shadowed areas 

indicate where the edge effect exists, widths of the shadows are 3 m; (b) The Parzen window 

function used to suppress the edge effect; (c) The windowed optical profile obtained by 

multiplying a with b, the shadowed areas indicate that the edge effect has been effectively 

suppressed; (d) The Fourier transform of c, reflecting mainly the spatial frequencies in the center 

areas of the near-field images. 
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Supplementary Figure 4 | Thickness dispersions of MoS2 waveguide with different degrees 

of symmetry. (a) and (b) Thickness dispersions of the TE0 and TM0 mode with increasing 

superstrate dielectric constant, respectively; (c) and (d) Thickness dispersions of the TE0 and TM0 

mode with decreasing substrate dielectric constant, respectively. The cut-off thickness decreases 

with the increasing degree of symmetry. 
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Supplementary Figure 5 | Electric field profiles of the fundamental and the first order TE 

waveguide modes. The high order modes possess smaller in-plane wavevectors compared with 

the fundamental modes, thus their evanescent fields extend much further out of the sample surface, 

leading to high excitation efficiencies of these high order waveguide modes and the enhanced 

interference visibilities in the s-SNOM images. 

  

-600 -400 -200 0 200 400 600
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

s-SNOM Tip

 

 

N
o

rm
a

li
z
e

d
 E

le
c

tr
ic

 F
ie

ld
 (

a
.u

.)

z (nm)

 E
y
 , TE

0
, d=250 nm

 E
y
 , TE

1
, d=250 nm

Air



 10 

 

Supplementary Figure 6 | Experimental verification of enhanced interference visibility of 

TE1 mode. We used a 250-nm-thick MoS2 sample supporting the first order TE mode to verify 

our explanation of the varying interference visibilities in Supplementary Fig 5 and main text. (a) 

AFM image and height profile for a 250-nm-thick MoS2 sample; (b) Near-field image and optical 

profile of the 250-nm-thick MoS2 sample; (c) Spatial frequency domain spectrum of the optical 

profile in b. Note that the frequency difference between TE1 and TM0 is expected to be 0.177k0, 

too small to be resolved in c. 
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Supplementary Figure 7 | Thickness dispersions of air-MoS2-SiO2 waveguide. The MoS2 

thickness range from 0 to 1000 nm. There are five TE modes (m=0~4) and five TM modes (n=0~4) 

for a waveguide of a 1000-nm-thick MoS2 guide layer. 
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Supplementary Figure 8 | AFM images and height profiles for h-BN samples of different 

thicknesses. (a) d=75 nm; (b) d=230 nm. 
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Supplementary Figure 9 | Large-area near-field images and real-space fringe profiles of h-

BN samples. (a) d=75 nm; (b) d=230 nm. 
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