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The mechanical behaviors of 2D materials are f undamentally i mportant f or their potential applications i n

various fields. α-Molybdenum t rioxide ( α-MoO3) crystals with unique electronic, optical, and electro-

chemical properties, have attracted extensive attention for their use i n optoelectronic and energy conver-

sion devices. F rom a mechanical v iewpoint, however, t here i s l imited i nformation a vailable on t he

mechanical properties of α-MoO3. Here, we developed a capillary f orce-assisted peeling method t o

directly t ransfer α-MoO3 nanosheets onto arbitrary substrates. Comparatively, we could effectively avoid

surface contamination arising f rom t he polymer-assisted t ransfer method. Furthermore, with t he help of

an i n situ push-to-pull ( PTP) device during SEM, we systematically i nvestigated t he t ensile properties of

α-MoO3. The measured Young’s modulus and fracture strengths along the c-axis ( 91.7 ± 13.7 GPa and 2.1

± 0.9 GPa, respectively) are much higher than those along the a-axis ( 55.9 ± 8.6 GPa and 0.8 ± 0.3 GPa,

respectively). The i n-plane mechanical anisotropy ratio can reach ∼1.64. Both Young’s modulus and t he

fracture s trength o f MoO3 s how a pparent s ize d ependence. A dditionally, t he multilayer α -MoO3

nanosheets exhibited brittle f racture with i nterplanar sliding due t o poor van der Waals i nteraction. Our

study provides s ome key points r egarding t he mechanical properties and f racture behavior of l ayered

α-MoO3 nanosheets.

Introduction

Thermodynamically s table molybdenum t rioxide ( α-MoO3)
consists of bilayer planar crystals of distorted MoO6 octahedra,
in which t he i nternal l inkages are f ormed by covalent bonds
and adjacent l ayers are held by weak van der Waals f orces.1,2

As a promising anisotropic l ayered crystal phase, α-MoO3 with
wide t unable bandgap, high electron mobility, and excellent
photoelectric properties, has attracted i mmense attention i n
the f ields of optoelectronics, f lexible e lectronic devices a nd
energy conversion devices.3–5 A comprehensive understanding
of t he mechanical properties of α-MoO3 i s essential t o f ulfill-
ing its potential applications. Given that the properties of elas-

ticity, bending ability, f racture s trength, and s tretchability of
α-MoO3 are heavily orientation-dependent,6,7 t he r eliability of
devices based on α-MoO3 nanosheets would be greatly affected
by t heir mechanical r esponses. However, t here h as b een
limited i nformation a vailable o n t he mechanical properties
and failure mechanism of α-MoO3.

Over t he past decade, s everal t esting methods have been
developed t o e xplore t he mechanical p roperties o f 2 D
materials, such as atomic f orce microscopy ( AFM) nanoinden-
tation methods,8–11 micro-electro-mechanical systems (MEMS)-
based i n s itu t ensile t esting,12–14 blister t esting,15–18 a nd s o
on.19,20 For e xample, AFM-based nanoindentation i s a t ech-
nique that was first used to determine the modulus and break-
ing strength of f reestanding monolayer graphene.8 The blister
test i s e mployed t o s tudy Y oung’s modulus a nd b ending
stiffness of various 2D crystals i nvolving graphene, MoS2, and
so o n.15,17,21,22 The i n s itu t ensile t est, a s a d irect t esting
method, a llows precise measurement o f c rystal o rientation-
dependent mechanical p arameters o f 2 D materials.7,14,23

Additionally, it facilitates the observation of deformation beha-
viors i n r esponse t o applied s train.13,14,24 One of t he major
challenges o f i n s itu n anomechanical t ensile t ests l ies i n
precise manipulation and then successful transfer of the ultra-
thin 2D membrane onto t he t arget device ( e.g., push-to-pull
(PTP)). To date, t he most f requently employed strategy i s t he
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polymer-assisted t ransfer a pproach,24,25 f ollowed b y s ub-
sequent heating/washing treatments to remove polymeric con-
tamination. However, t he p resence o f p olymer r esiduals i s
inevitable a nd a ffects t he mechanical r esponses o f 2 D
materials.26 Therefore, i t r emains c hallenging t o develop a 
novel transfer method to prepare clean test samples with high
efficiency.

In this work, we developed a capillary force-assisted peeling
method t o d irectly t ransfer i ndividual α -MoO3 n anosheets
onto t he t arget device i n l iquid environments. A comparative
analysis of the wetting behaviors of various liquids at the inter-
face between SiO2/Si and α-MoO3 systems was conducted. The
as-prepared s amples a re r eady f or mechanical t esting a fter
removing r esidual s olvents. The anisotropic mechanical pro-
perties of α-MoO3 sheets were systematically investigated using
a nanomechanical tensile testing device during scanning elec-
tron microscopy ( SEM). The derived mechanical properties of
α-MoO3 nanosheets revealed orientation dependence, with an
anisotropic f actor o f Y oung’s modulus r eaching 1 .64. We
observed t he apparent s ize dependence of Young’s modulus
and f racture strength values of α-MoO3. Additionally, t he f rac-
ture behaviors of α-MoO3 were studied along t wo orthogonal
axes. Our work not only provides i mportant i nsights i nto t he
anisotropic mechanical properties and f ailure mechanism of
α-MoO3, but will also be helpful i n the transfer of other multi-
layer 2 D n anosheets d irectly without t he p resence o f a n
additional polymer layer.

Results and discussion

Fig. 1a s hows t he s chematic diagram of t he α-MoO3 l ayered
crystal s tructure, where a bilayer distorted MoO6 octahedron
forms e dge-sharing z igzag r ows a long t he [ 001] d irection
(c-axis) a nd c orner-sharing a rmchair r ows a long t he [ 100]
direction ( a-axis). Along t he [ 010] direction ( b-axis), t he multi-
layer α-MoO3 nanosheets are held t ogether by weak v an der
Waals forces. In detail, there are three different types of oxygen
atoms within the distorted octahedron, including the terminal
oxygen ( O1) bonding t o t he Mo atom i n t he b-axis direction,
the asymmetric oxygen ( O2) bonding t o t wo neighboring Mo
atoms having different l engths along t he a-axis direction, and
the symmetric oxygen ( O3) f orming bonds with t wo equal Mo
atoms i n t he c -axis and a bond i n t he b-axis. The r eported
lattice c onstants of MoO3 are, r espectively, a = 3.963 Å, b =
13.860 Å, and c = 3.697 Å (JCPDS file: 05-0508).2,27,28

The α-MoO3 nanosheets were prepared by t he mechanical
exfoliation method with t hicknesses i n a r ange f rom 2 0 t o
500 n m. A s s hown i n F ig. 1 b, t he e xfoliated α -MoO3

nanosheets with t heir r ectangular s hape p referentially t ear
along t he c -axis due t o t he e nergy r elease a long t he c -axis
being much g reater t han t hat a long t he a-axis.6 To f urther
verify t his f avored o rientation, high-resolution t ransmission
electron microscopy ( HRTEM) was e mployed t o c haracterize
the crystal orientation and lattice spacings, as shown in Fig. 1c
and d. In detail, the lattice spacing of orthorhombic α-MoO3 is

0.38 nm along the c-axis and 0.39 nm along the a-axis, respect-
ively, which agrees well with t he distances of [ 001] and [ 100]
lattice planes. The s elected a rea e lectron diffraction ( SAED)
pattern shown in Fig. 1e reveals the single-crystalline nature of
the sample.

As a n on-destructive method, a ngle-resolved p olarized
micro-Raman s pectroscopy ( ARPRS) was e mployed t o deter-
mine t he c rystal o rientation a t t he microscopic l evel.29,30

Fig. 1f presents t he polarized Raman spectrum of an i ndivid-
ual MoO3 nanosheet. The peaks c entered a t 114 c m−1 a  nd
283 c m−1 are assigned t o B2g modes. The peak c entered at
158 cm−1 is assigned t o t he Ac

g mode, which originates f rom
the t ranslation vibration of t he r igid MoO6 octahedral chains
along t he c -axis. The peak c entered at 818 c m−1 (  Aa   

g mode)
reflects the asymmetric stretching vibration of O–Mo–O atoms
along the a-axis.31,32 The polar plots and fittings of normalized
Raman intensities of Ac

g and Aa
g modes as a function of sample

rotation angle θ are shown i n Fig. 1g and h. The i ntensity of
both A c

g a nd A a
g modes e xhibits c lear d ependence o n t he

inclined angle θ, where θ r epresents t he angle between i nci-
dent polarization a nd t he a -axis. S pecifically, t he Ac

g mode
reaches l ocal maximum along t he c -axis while t he Aa

g mode
reaches local maximum along the a-axis. These two modes can
be well f itted t o I (Ag) ∝ ( Acos2 θ + Csin2           θ )2  , which i s t he
detailed c alculation p rocess f or t he a nisotropy o f R aman
signals presented i n section S1.† Thus, we would employ Ac

g

and A a
g modes t o i dentify t he c rystal o rientation o f t he

samples.
Owing t o t he extra-low bending stiffness of f ew-layer t hick

2D nanosheets, a polymer assisted method has been widely
employed t o t ransfer t he i ndividual 2D nanosheets f rom t he
initial substrate to the target substrate. After suitably position-
ing t he t est s ample, t he s upported polymer l ayer has t o be
removed by either t hermal annealing or acetone washing.14,24

Unfortunately, the presence of residual polymer acting as con-
tamination would greatly deteriorate t he mechanical perform-
ance of 2D materials.33–35 Here, we develop a facile method to
directly t ransfer 2D materials t o t he PTP devices. Fig. 2a pre-
sents t he s chematic drawing o f t he c apillary f orce-assisted
peeling method, where t he α-MoO3 nanosheets a re directly
exported onto t he SiO2/Si substrate. To f acilitate t he manipu-
lation of i ndividual α-MoO3 nanosheets, t he whole s ubstrate
was i mmersed i n a l iquid solution ( e.g., water ( H2O), ethanol
(EtOH) and isopropanol (IPA)). The micro-probe was utilized to
slightly detach the edge of the MoO3 nanosheet from the sub-
strate. Meanwhile, t he solvent was gradually entrapped i nside
the interface to weaken the interfacial adhesion between MoO3

and t he SiO2/Si s ubstrate, as presented i n Fig. 2b and c. To
deeply understand t he underlying mechanism of t he l iquid-
assisted t ransfer methodology, we quantitatively evaluated t he
changes i n t he w ork o f a dhesion b ased o n a n e nergy
analysis.35–37 Generally, t he t hermodynamic work of adhesion
for t he s eparation of MoO3 nanosheets f rom t he underlying
substrate in air can be expressed by eqn (1):

Wair
a

¼ γSiO2 þ γMoO3             �γSiO2        –MoO3       
ð            1Þ
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Fig. 1 (  a) Schematic diagram of orthorhombic α-MoO3, where α-MoO3 nanosheets are packed t ogether by van der Waals i nteraction along t he
b-axis, t he vertex angle i s s hared along t he a-axis direction and a common edge connection along t he c-axis direction. ( b) Optical picture of
α-MoO3, with an angle of 0° t o t he vertical edge. ( c) Low magnification TEM i mage of mechanically exfoliated α-MoO3 nanosheets. ( d) HRTEM
image of α-MoO3. ( e) Selected area electron diffraction pattern of α-MoO3. ( f ) Raman spectra at different angles with respect to the vertical axis of
α-MoO3. ( g and h) Theoretical ( solid l ines) and experimental ( circles) profiles for angle-resolved normalized Raman i ntensities of Ac

g and Aa
g modes,

respectively.

Fig. 2 (  a) Schematic diagram of the transfer process. ( b) Peeling α-MoO3 progressively with a probe i n a l iquid environment. ( c) Schematic diagram
of t he l iquid wetting i nterface i n t he c apillary peeling e xperiment. ( d) Calculated t hermodynamic work of a dhesion, Wa, i n different l iquid
environments.
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where, γSiO2
and γMoO3                

a re t he f ree energies of t he SiO2/Si sub-
strate a nd MoO3, r espectively. γ SiO2–MoO3

r epresents t he f ree
energy of t he SiO2–MoO3 i nterface. Once t he air medium has
been replaced by certain types of solvents, and the whole sub-
strate i s correspondingly i mmersed i n a l iquid environment,
the thermodynamic work, Wliquid

a , can be expressed by eqn (2):

W liquid
a ¼ γSiO2-l þ γMoO3-l�γSiO2–MoO3 ð2Þ

where γSiO2- l and γMoO3                  - l are the free energies between the SiO2/
Si substrate and liquid, and MoO3 and liquid, respectively.

According t o t he Y oung–Dupré e quation, t he a dhesion
work i n the l iquid environment depends on the l iquid surface
energy ( γl) a nd c ontact a ngles on t he SiO2/Si s ubstrate a nd
MoO3 surface:

W liquid
a ¼ Wair

a � γ1ðcos θSiO2 þ cos θMoO3Þ ð3Þ

where θSiO2
i s the contact angle between t he substrate and the

liquid, and θMoO3
i s t he contact angle between MoO3 and t he

liquid. T he f ree e nergies o f t he S iO2 ( γSiO2
), MoO3 ( γMoO3

)
and substrate–MoO3 ( γSiO2−MoO3        

) i nterfaces can be derived via                          

the Owens Wendt model a nd Y oung–Dupré e quation.38,39

Detailed information is presented in the ESI section S2.†
Fig. 2 d c ompares t he c alculated v alues o f t he work o f

adhesion of t he SiO2/Si substrate and MoO3 i n air, EtOH, I PA
and H2O. Apparently, the work of adhesion shows dependence
on t he l iquids e mployed. The d ecreased t rend o f work o f
adhesion between t he SiO2/Si s ubstrate and t he MoO3 f rom
0.132 t o 0 .0036 J m−2 (  an ∼37-fold d ecrease i n H2O) was
observed. The quantitative analysis described above r evealed
the u nderlying mechanism o f t he c apillary f orce-assisted
peeling process. In addition, the wetting behavior of the device
also plays an i mportant r ole i n t he deposition step. Fig. S3a
and b† show t he contact angles of t he PTP devices with and
without O2 plasma treatment. The hydrophilic surface (contact
angle b  elow 9  0°) f  acilitated t  he d  eposition o  f M  oO3

nanosheets o nto t he s ubstrate, w hereas t he h ydrophobic
surface w  eakened t  he i  nteraction b  etween t  he M  oO3

nanosheets a nd t he s ubstrate ( contact a ngle a bove 9 0°).
Eventually, t he MoO3 nanosheet was s uccessfully t ransferred
to t he plasma-treated device, f ollowed by air drying ( Fig. S4a–
c†). I t i s worth noting t hat t he present t ransfer method devel-
oped i n our work f acilitates t he preparation of t est s amples
with high efficiency.

To investigate the mechanical behaviors of multilayer MoO3

nanosheets, u niaxial t ensile s trength t ests were c onducted
through an i n situ nanomechanical testing system during SEM
(Fig. 3a). The pico-indenter pushes the freestanding part of the
device to i nduce uniaxial stretching with a constant strain rate
1 nm s−1. Meanwhile, t he f orce i s recorded by t he sensor and
the whole deformation process i s s imultaneously r ecorded.
The t hickness o f MoO3 n anosheets i s measured b y A FM
(section S5†). I t i s worth noting t hat t he adhesion between
MoO3 and t he underlying substrate driven by t he vdW i nter-
action i s s trong enough t o f irmly clamp t he sample without
apparent slippage. To support t his, we measured t he distance

between t he reference point and t he t rench edge as shown i n
Fig. S6a, b and c, d† along t wo axes, respectively. The consist-
ent l ength before a nd a fter t he t ensile t ests i ndicated t hat
there was no discernible slippage at the interface.

Fig. 3b presents the typical stress–strain curves of the MoO3

nanosheets along the c-axis and a-axis, respectively. The l inear
elasticity of t he c urves e nables us t o s atisfactorily e valuate
Young’s modulus a long t hese t wo a xes. A s e xpected, t he
measured Young’s modulus and f racture strength are strongly
dependent o n t he c rystalline a xes. I n detail, t he measured
Young’s modulus and fracture strength along the c-axis (91.7 ±
13.7 GPa and 2.1 ± 0.9 GPa, respectively) are much higher than
those a long t he a -axis ( 55.9 ± 8 .6 GPa a nd 0 .8 ± 0 .3 GPa,
respectively) within a t hickness r ange of 30–50 nm. Detailed
information i s s ummarized i n Table S 3.† The observed a n-
isotropy i n the mechanical properties is assigned to the aniso-
tropic crystal structure of MoO3 nanosheets, where t he asym-
metric O2 atom i s c ovalently c onnected with t wo Mo atoms
along the a-axis while the symmetrical O3 atom bonds to three
Mo a toms a long t he c -axis. F urthermore, t he d erived a n-
isotropy r atio ( Ec-axis/Ea-axis) o f Y oung’s modulus f or MoO3

nanosheets within a thickness range of 30–50 nm could reach
∼1.64. Comparatively, i n-plane anisotropy ratios of various an-
isotropic 2D materials, i ncluding black phosphorene ( 3.81),40

As2S3 ( 3.15),41,42 T iS3 ( 1.6),43 S iP ( 1.3),44 S iAs ( 1.33),44 S iC
(1.17),45 G  eP ( 1.25)44 a nd GeAs ( 1.2)44 a re s ummarized i n
Fig. S7.† Impressively, the anisotropy ratio of Young’s modulus
of MoO3 is one of the largest reported in 2D materials so far.

Fig. 3c, e and d, f represent t he t ypical SEM i mages of t he
MoO3 nanosheets before and after t he t ensile t ests along t he
c-axis and a-axis, r espectively. Similar t o other 2D materials
(e.g., graphene, MoS2, MoSe2), the MoO3 nanosheets exhibited
brittle f racture with a smooth crack f ront. Due t o t he i n-plane
orthogonal structure of MoO3, the crack could catastrophically
propagate along t he l attice orientation, l eading t o a s imilar
fracture edge along the two axes.

Earlier works have stated that the mechanical properties of
2D materials, s uch a s g raphene, g raphene o xide ( GO) a nd
MoS2, are highly i nfluenced by their size.46–48 For example, an
apparent decrease i n modulus and f racture s trength of gra-
phene nanosheets was o bserved, s temming f rom i nevitable
interlayer slippage between adjacent layers during the indenta-
tion process.49 Furthermore, f or GO and MoS2 nanosheets, a
similar decreasing t rend was observed with i ncreasing sample
thickness.47,48 MoO3 n anosheets a re e xpected t o e xhibit a 
similar size effect along t he t wo axes. Fig. 3g shows an appar-
ent d ecrease i n Y oung’s modulus ( along t he c -axis) with
increasing thickness from 30 nm to 150 nm. Comparatively, as
the t hickness varied i n a relatively l arge range f rom 30 nm t o
600 nm ( a t wenty-fold i ncrease), Young’s modulus ( along t he
a-axis) e xhibited a s ignificantly d ecreasing t rend ( Fig. 3 h).
Furthermore, t he f racture s trength a lso presented a s imilar
trend. Upon increasing the cross-sectional area (thickness mul-
tiplied by width) f rom 0 t o 0.3 μm2, a slight decrease i n t he
fracture strength (along the c-axis) was observed (Fig. S8a†). In
contrast, within a l arger range ( from 0 t o 7 μm2), t he f racture
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strength ( along t he a-axis) demonstrated a significant decline
as the cross-sectional area increased (Fig. S8b†). As mentioned
earlier, owing to its high mechanical anisotropy, the most exfo-
liated MoO3 nanosheets a ppeared a s r ibbon-like s tructures
with l ength direction along t he c-axis. Typically, t he l ength of
exfoliated s amples i s a round 1 0–50 μ m a nd t he width i s
around 0.6–5 μm. As a consequence, experimentally, i t i s hard
to directly obtain t he r ibbon-like s amples a long t he a -axis.
Instead, t he width of t ested samples i s i n a r ange of several
hundreds of nanometers t o s everal t ens of micrometers. To
exclude t he s ample s ize i nfluence on Young’s modulus, we
also e mployed F IB t o t rim t he e xfoliated s ample t o s trips
1.6 μm i n width with stretching direction along t he a-axis, as
shown in Fig. S9a.† For FIB-trimmed samples with a thickness
of 96 nm, t he measured Young’s modulus along t he a-axis i s
44.7 GPa, which is close to that of sample #6 with thickness of

105 nm along t he a-axis ( 61.2 GPa). Therefore, t he i mpact of
width on Young’s modulus is negligible.

Unlike t he o bservable f ailure p rocess i n t he s tretched
mono- or f ew-layer t hick 2D materials ( e.g., graphene, MoS2
and MoSe2),

13,24,48,50 we were u nable t o c apture t he c rack
initiation a nd p ropagation d uring S EM o wing t o t he high
speed of crack growth. To reveal the underlying failure mecha-
nism, TEM was e mployed t o c haracterize t he f racture mor-
phology. Fig. 4a and b s how t he s mooth edges of f ractured
MoO3 nanosheets roughly along t he c-axis and a-axis, respect-
ively. The observation of the obvious layer step around the frac-
tured edges i ndicated t he poor i nterlayer i nteraction, f urther
proving t he i nterplanar f racture-dominated f ailure mode.
Earlier work has proven t he t ransition of f racture modes f rom
intraplanar f ailure t o i nterplanar f ailure f or MoS2 once t he
layer t hickness i ncreases f rom a f ew nanometers t o s everal

Fig. 3 (  a) Nanomechanical device ( PTP) and a pico-indenter. ( b) Typical tensile stress–strain curves along t wo orthogonal directions. The derived
Young’s modulus along the c-axis i s 103.9 GPa and along the a-axis i s 41.0 GPa. ( c and d) Snapshots of MoO3 nanosheets before and after l oading
along the c-axis. ( e and f) Snapshots of MoO3 before and after l oading along the a-axis. The dependence of Young’s modulus of MoO3 nanosheets
on sample thickness: along the c-axis (g) and a-axis (h). The arrows are plotted to guide the eye.
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hundred nanometers.48 During t he t ensile process, t he pres-
ence o f d efects o r i ncomplete s heets w ithin t he MoO3

nanosheets would easily i nduce stress concentration, followed
by t he crack penetrating t he whole cross-section of stretched
nanosheets, and finally the sudden brittle fracture occurred i n
the width direction a s s hown i n t he s chematic o f F ig. 4 c.
Additionally, we also observed the slight crack deflection when
nanosheets were s tretched along t he a-axis, as presented i n
Fig. 4d. TEM characterization of t he deflected point shown i n
Fig. 4e–g proves that t he f racture path i s not exactly along t he
c-axis with a tilted angle of around 7°. Generally, the deflected
crack path enables materials to dissipate more energy, l eading
to t  heir r  elatively l  arge f  racture s  trength a  s w  ell a  s
toughness.7,12 F or e xample, a rising f rom a symmetric e dge
elastic properties, the stable crack propagation with a deflected
and branched path endows a monolayer h-BN nanosheet with
high f racture t oughness f ar beyond t hat g iven by Griffith’s
law.12 Herein, the small tilted angle together with catastrophic
failure proves the brittleness of MoO3 nanosheets.

Conclusions

In s ummary, we d eveloped a f acile l iquid-assisted t ransfer
approach t o d irectly t ransfer MoO3 n anosheets o nto P TP
devices i n a l iquid environment. The t rapped H2O can greatly
reduce t he a dhesion e nergy between MoO3 a nd t he S iO2/Si

substrate t o f acilitate t he d etachment o f n anosheets. T he
approach developed i n t he present work not only efficiently
avoids the contamination caused by the conventional polymer-
assisted t ransfer method, but also enhances t he efficiency of
preparing t est s pecimens. F urthermore, w e s ystematically
investigated t he mechanical properties of multi-layered MoO3

nanosheets as well as t heir size dependence along t wo axes.
The Young’s modulus of MoO3 s ignificantly decreases with
increasing thickness. In the same thickness range, the derived
Young’s modulus and fracture strength along the c-axis (91.7 ±
13.7 GPa and 2.1 ± 0.9 GPa, respectively) are much higher than
those a long t he a -axis ( 55.9 ± 8 .6 GPa a nd 0 .8 ± 0 .3 GPa,
respectively). T he d erived a nisotropy r atio r eaches ∼ 1.64,
which can be assigned to its crystal structure. Additionally, the
multilayer MoO3 shows a brittle f racture mode with apparent
interlayer slippage. Our work provides a basic understanding
of t he application of MoO3 i n e lectronic and optoelectronic
devices.

Experimental section
Materials preparation and characterization

MoO3 nanosheets were mechanically cleaved f rom t heir bulk
using Scotch t ape. The Si wafers with a 300 nm SiO2 capping
layer were processed using oxygen plasma ( CPA-A, CIF) before
transferring MoO3. Optical microscopy was used t o prelimina-

Fig. 4 (  a and b) TEM i mages of the fracture morphology along the c-axis and a-axis, respectively. ( c) Schematic i llustration of the fracture mode of
the MoO3 nanosheet. (d) SEM i mage of the observable crack deflection. (e) TEM i mage of the fracture morphology along the a-axis. (f and g) HRTEM
images of MoO3 i n ① and ②. Inset: Selected area electron diffraction pattern.
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rily determine the crystal orientation and this was further con-
firmed by micro-Raman s pectroscopy ( Renishaw i nVia plus).
TEM i mages and SAED patterns were recorded t o characterize
the l attice s tructure using a f ield e mission F EI Tecnai G2
F20 microscope ( FEI, USA) o perated a t 2 00 k V. T he A FM
(Multimode 8HR, Bruker), i n t he standard t apping mode, was
used to measure the thickness of MoO3.

Contact angle measurements

We measured t he water contact angle on both plasma-treated
and untreated devices. MoO3 crystals and the SiO2/Si substrate
were utilized t o measure t heir contact angles within different
liquids ( H2O, E tOH a nd I PA) u sing a K RUSS D SA100S
instrument.

Preparation of MoO3 for mechanical tensile tests

The transfer of MoO3 was conducted with the help of a transfer
platform (Metatest, E1-T). Solvents such as H2O, EtOH and IPA
would evaporate spontaneously after t he PTP devices contain-
ing i ndividual MoO3 n anosheets were r emoved f rom t heir
liquid environment.

Tensile testing

MoO3 on t he PTP device was t ested using a Hysitron pico-
indenter ( PI85) i nside a J C-Zeiss Merlin S EM. A d iamond
indenter can push t he PTP device and t he l oad f orce and dis-
placement were recorded using t he transducer. The stretching
rate was set at 1 nm s−1 t  o realize quasi-static loading. The real
displacement o f t he s ample i n t he t ensile process i s r ead
through video using the program code we wrote. The fractured
MoO3 was c haracterized b y T EM u sing a n F EI T ecnai G2
F20 microscope (FEI, USA).
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