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Abstract:

Two-dimensional van der Waals (vdW) materials have a full set of highly confined
polariton modes, such as low-loss phonon polaritons and dynamically tunable graphene
plasmons, which provide a solution for integrated nanophotonic devices by combining
the unique advantages of different polaritons. Highly efficient coupling between these
complementary polaritons is key to realize the nanoscale optical integration. However,
fluctuations of permittivity or geometry at the abrupt interfaces have been demonstrated
as perturbations or scatters of polaritons. Here, in-plane plasmon—phonon polariton
coupling in an in-plane graphene/hexagonal boron nitride (BN) heterostructure is
studied using a full-wave electromagnetic numerical model. Transmittance between

different polaritons is proportional to momentum matching, which can be tuned using
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the graphene Fermi energy. The transmittance between a graphene plasmon and a BN
phonon polariton can be controlled between 0% and 100% within the upper
Reststrahlen band of the BN. This is central to many photon devices, such as
waveguides, wavefront shapers, filters, modulators and switches. Moreover, we
simulate near-field interference patterns in an in-plane heterostructure based on the
theoretical dispersion relation of polaritons, enabling scattering scanning near-field
optical microscopy a potential experimental method to investigate the coupling between
different polaritons. This study provides a theoretical basis for efficient coupling of
propagation and modulation between different polaritons in in-plane heterostructures
of vdW materials, which could pave a way to design nanoscale multi-functional

waveguide devices in integrated photonic systems.

Introduction

Emerging telecommunication and data routing applications require ultra-compact
photonic integrated circuits.!> Polaritons supported at interfaces between media with
permittivities of opposite signs can break the diffraction limit, allowing light to be
confined and manipulated at the nanoscale.>"® Polaritons in two-dimensional (2D) van

der Waals (vdW) materials have been widely studied recently,”” such as plasmon

10,11 12,13

polaritons in graphene ™ and black phosphorus, ~° exciton polaritons in
MoSe;,'* and phonon polaritons in hexagonal boron nitride (BN).!>!® These polaritons
in vdW systems have demonstrated the highest degree of confinement among all the
known materials as well as many other complementary virtues, such as electrical
tunability of the graphene plasmon (GP),'7"? anisotropy plasmonic performance of

black phosphorus,?'2?

and a low loss long-distance propagation performance of BN
phonon polaritons.?> > These advantages enable a platform for strong light-matter
interactions and efficient polaritonic waveguides, which have great potential in

2631 sub-diffractive optical focusing and imaging,*>* and

enhanced infrared sensing,
hyperbolic optical metasurfaces.’ Moreover, vdW heterostructures can be designed by
assembling different vdW layers at the level of single atomic planes, enabling

unparalleled control of each polariton and new electromagnetic modes by coupling of
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different brands of polaritons.”® For example, GPs can interact with phonon polaritons
or phonons in underlying polar substrates such as BN?**3 or Si0,,°**7 and the
resulting hybridized polaritons inherit electrostatic tunability from the graphene and
long lifetimes from the phonons.>*

Besides the out-of-plane coupling of different polaritons by vertically stacking vdW
materials together, integrating them in the plane is also a promising route toward more
compact and efficient integrated photonic circuits.>®3? In previous studies, improved
polariton excitation, modulation, and functions have been found in Ilateral
structures.>>*° For example, by integrating tapered SiC with graphene, the excitation
efficiency of GPs can be effectively improved to 25% via compressing surface
polaritons in tapered SiC.*° Coupling BN phonon polaritons over a graphene-covered
gap can give a modulation depth of 14-20 dB by gating the graphene.*’ A lateral device
was proposed to use edge-free carbon nanotubes as a low-loss plasmon waveguide and
the graphene disk as a tunable coupling modulator.>® All the functions described above
also depend on the out-of-plane coupling of polaritons in the overlapping region, but
geometrical discontinuity decreases the coupling efficiency because of electromagnetic
scattering at the interface.*®** To avoid this side effect and develop atomic-thin-layer
integrated circuits, many efforts have been invested to fabricate an in-plane
heterostructure by epitaxial growth, in which two different vdW materials are
seamlessly stitched together.*** For example, monolayer BN was heteroepitaxially
grown on graphene edges through the chemical vapor deposition method due to their
close crystal lattice match (1.7%).*' However, there is a lack of study on polariton
propagating behaviors in an in-plane seamlessly connected heterostructure and the
transmittance at the interfaces of different vdW materials is not clear.

Here, we study the transmission of graphene plasmons and BN phonon polaritons at the
interface of the graphene/BN in-plane heterostructure by the finite element method
(FEM) and propose a full-wave electromagnetic numerical model of in-plane plasmon—
phonon polariton coupling. The numerical model avoids the complex electromagnetic
field boundary conditions at the heterostructure interface required in the analytical
theory and can solve the coupling between different polaritons by accurate waveguide

3
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mode analysis.*> We find that transmittance is mainly determined by the difference in
the momentums of different polaritons, which increases as the momentum difference
decreases. Tuning the momentum matching conditions by changing the graphene Fermi
energy allows a wide range of transmittance modulations, from 0% to 100%, to be
achieved. To quantitatively characterize the electromagnetic field distribution at the
interface during the transmission process, the near-field interference patterns of
polaritons are simulated based on their theoretical dispersion relation. Transmittance
analysis of the near-field interference patterns is consistent with the results of the
previous numerical model, meaning that scattering scanning near-field optical
microscopy (s-SNOM) could be used to study polariton coupling. This study provides
a theoretical basis for developing ultracompact polariton circuitry and multi-functional

polariton devices based on 2D vdW heterostructures.

Results and discussion

The graphene/BN in-plane heterostructure is schematically displayed in Fig. 1a. The
close match (1.7% different) between the graphene and BN lattices means that the
materials can be integrated with coherent lattices.41 For simplicity, the freestanding
graphene/BN in-plane heterostructure is considered and the graphene has uniform
charge density. The graphene and BN can support the plasmon and hyperbolic phonon
polariton (HPP), respectively. When the propagating plasmon (phonon) polariton
reaches the graphene-BN interface, they can reflect back or transmit into phonon
(plasmon) polaritons in the other side.

The electromagnetic responses of graphene and BN can be exhibited by the frequency
(w)/momentum (q) dispersion relations of their polariton modes. The dispersion curves
can be represented as the imaginary part of the Fresnel reflection coefficient r,(g,),
defined as the reflected field amplitude E; to the incident field amplitude E; ratio at the
air/graphene (or BN/air) interface.!>*¢47 In this work, we do not consider the effect of
the substrate on graphene, which can affect the plasmon polariton dispersion
relationship** and not change the coupling law in the graphene/BN heterostructure. For
a freestanding GP, its 7p(q,m) is as follows:*

4
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Antky*c /@
2€0k0 + 4nk02cr/a)

rp(qa a)) = (1)

where ¢ is the dielectric constant of air, ko represents the momentum of the photon in
the air layer, and o = a(g,w) is the in-plane optical conductivity of graphene that was
obtained from the random phase approximation method.*® The specific dielectric
function of graphene?”**** is shown in Fig. S1 of the ESL.}

The BN HPP mainly depends on its hyperbolic property. The permittivity tensor of BN
is diagonal, with ex =&y, =¢1 and &.: = ¢ being the components perpendicular and
parallel to the anisotropy axis, respectively.?>>*! There are two Reststrahlen (RS)
bands in BN, where the lower frequency RS band corresponds to type-I hyperbolicity
(e1 <0, 1> 0), and the upper RS band shows type-II hyperbolicity (e1 <0, & > 0). The
RS bands are the spectral intervals between the LO and TO phonon

frequencies.**! The BN permittivity (Fig. 1b) can be described using the equation:’!

(GJLO,m) - (CUTo,m) (2)

Em — & & X
m co.m + 0. m 2 . 2 s r

where m = L1 and ||. The out-of-plane A, phonon modes of BN are wto= 780
cm 'and wro= 830 cm !and the in-plane E;,phonon modes are wto= 1370
cm ! and wro = 1610 cm™!. The other parameters are ex1 = 4.87, exy= 2.95, L= 5
cm 'and =4 cm .

The rp(q,0) of freestanding BN could be calculated as follows: '

(1 — eiZkgd)(ELko — Eokg)/(E'Lko —+ Eokg)
1-— eiz}cﬁd[(éj_ko — Sokg)/(ej_ko + Sokg)]z

(g, ) = (3)

where k% represents the z-axis momentum of the photon in the BN layer, which is given

k; = \/1: (w/c) -(¢, /¢ )q"

by , and d is the thickness of BN. In our model, d is 1 nm

and the HPP response of the freestanding BN occurs in the upper RS band.
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The dispersion curves of the GP and HPP are displayed by plotting the false colour map
of the imaginary parts of their 7, in Fig. 1c. We also calculate their dispersion by the
FEM and plot the results in Fig. 1c. The obtained grey and green dots, corresponding
to GP and HPP, respectively, are consistent with the curves derived from the rp(q,w)
theory. As can be seen, only the fundamental modes of the GP and HPP appear in the
momentum space displayed in the range from 0 to 16 x 10° cm™!. And the two polariton
modes can reach momentum matching at around 1385 cm™'. The momentum of the BN
HPP is larger than that of the GP over most of the frequency ranges. Thus the
wavelength compression is more obvious in the BN HPP than that in the GP.

The BN HPP mode can be interpreted further by calculating its field profiles using the
FEM. We plot the variation of the total electric field (Norm E) and the electric field x-
direction component (Eyx) on the z-axis (Fig. 1d). According to the mode analysis results,
Norm £ is confined near the BN surface and decreases quickly moving outwards, which
is a feature of surface phonon polaritons.>> The profile of the electric field x-direction
component (E,) can directly reflect the TMo mode because there is no node (Re(Ex) =
0) in the electric field distribution E, within the BN film.>! As for the graphene plasmon,
the TM mode has been widely investigated and its electromagnetic field is an
evanescent wave. 5

We study the transmission of the GP and BN HPP through the graphene/BN interface
by full-wave electromagnetic simulation. In the process of polariton propagation, we
use a 2D model to simplify the calculation, where the computation domain is 2 pm in
the propagation direction and 10 um in the vertical propagation direction. In order to
perform the boundary mode analysis of the incident port and the exit port, the ports are
set to numerical ports. The whole area is surrounded by absorbing boundaries. The
mesh size of the graphene/BN heterostructure is 0.1 nm and the mesh size gradually
increases outside the heterostructure layer, at which the calculations reach proper
convergence. A typical frequency range from 1360 to 1430 cm™! covering both the GP
and HPP within the upper RS band (1370-1610 cm™") of BN is considered. In this
calculation, the absorption of the GP and BN HPP is neglected since it does not affect
the resulting transmission spectra.>® First, we calculate the transmission spectrum of the

6
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GP into the BN, shown as red diamonds in Fig. 2a. The transmittance is nearly zero at
the frequency outside the RS band (<1370 cm™') because there are no BN HPPs outside
the RS band. In this area, for graphene, the heterostructure interface is similar to a
natural edge, where the transmittance of the GP is nearly zero and the total reflection
occurs.”’ The transmittance increases as the frequency increases until it reaches a
maximum and then gradually decreases in the upper RS band range. The maximum
transmittance is nearly 100% at a frequency of around 1385 cm™!, where the GP and
HPP reach the momentum matching. We also calculate the transmission of the BN HPP
into the graphene plane to verify this. The calculated result (black dotted line) is
completely coincident with the transmission spectrum of the GP to the HPP (red
diamonds). Thus, the transmission of the GP and BN HPP does not depend on the
direction of propagation of the polariton wave but is strongly related to the momentum
matching.

The differences between GP and HPP momentums at different frequencies are
calculated, as shown in the inset of Fig. 2b. When the frequency is around 1385 cm ™/,
the momentum difference |gaN — ggr|/(gBN + ggr) 1s around zero and the two kinds of TM
modes reach momentum matching. Under these conditions, the two electromagnetic
modes are close to each other and the dielectric boundary almost has no effects;
therefore almost 100% transmission is realized. When away from this point, the
difference between the momentums of the two TM modes increases and the effects of
the dielectric boundary become more severe, corresponding to decreased transmission.
We plot the transmittance of the GP and HPP as a function of 1 — (|gBN — gerl/(gBN + ¢er)
in Fig. 2b. As shown, the transmittance monotonically increases as the momentum
matching increases.

For a deeper physical insight, we examine the spatial electromagnetic distribution of
the propagating GP and HPP modes at the interface. The absorption of the GP and HPP,
which does not affect transmission at the interface, is also neglected. Take the
transmission of the GP into BN as an example. Fig. 2c illustrates the spatial distribution
of the real part of the electrical field in the x direction E, (Re(Ey)) at three typical
frequencies, i.e., 1410 cm ! (P1), 1385 cm ! (P2) and 1365 cm ! (P3). They are

7
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corresponding to large transmission (P1), total transmission (P2) and total reflection
(P3), respectively, which can be revealed by the electromagnetic distribution of the
transmitted HPP. At P1, the wavelength of the GP is 224 nm, and when it passes through
the interface and turns into a BN HPP, its wavelength is confined into 81 nm. This
corresponds to a wavevector increase of 4.95 x 10°cm ! and only 77.6% of the
electromagnetic energy being transferred into the BN HPP. At P2, the wavelengths of
the GP and BN are exactly the same, which means perfect wavevector matching and
indeed nearly 100% electromagnetic energy transmission. At P3, no electromagnetic
energy can be transmitted into the BN because no HPP can be supported at this
frequency.

The polariton transmission in this in-plane heterostructure can also be tuned because of
the tunability of the GPs. Based on the above analysis, one of the most effective ways
is changing the difference between the GP and BN HPP momentums. The GP originates
from the density of electron gas and can be actively tuned by applying an electric bias.
The BN polariton mode, which is from oscillations of lattice atoms in the polar crystal,
is difficult to be changed.*” Thus, we can tune the GP momentum to tune the
transmission behavior in the in-plane heterostructure as shown in Fig. 2 by changing
the Fermi energy (Er) of graphene. The calculated transmission spectra for different
graphene Er values are shown in Fig. 3a. Two typical frequencies (1385 and 1377 cm™!)
of polaritons are selected, and the results at other frequencies are similar. It can be seen
that transmittance can almost increase from almost 0% to 100% as EF increases,
reaching a maximum and then slowly decreases. At different frequencies, the
transmittance maximum occurs at different graphene Fermi energies.

The electrical tunability of transmission is directly determined by the momentum
matching of different polaritons. The GP and BN HPP momentums corresponding
to Fig. 3a are illustrated in Fig. 3b. The BN HPP momentum remains constant, while
the GP momentum gradually decreases as the Fermi energy increases, following the
equation g X wy*/Er.>>® The GP momentum is larger than the BN HPP momentum at
lower Er. Thus the GP momentum is gradually close to the BN HPP momentum and
the momentum difference decreases as the Fermi energy increases (Fig. 3b, inset).
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When the momentum curves of the GP and BN HPP intercross, the transmittance is the
largest (~100%), as the condition for the frequency of 1385 cm ™! with Er= 0.4 eV.
Because of the large tunable momentum difference, we can realize a wide range
modulation of transmittance from 0% to 100%. This transmittance modulation can be
achieved over a large spectral range. By changing the graphene Fermi energy, we can
control the graphene plasmon dispersion as shown in Fig. S5 of the ESL, T which will
change the intersection of graphene plasmon dispersion and BN phonon polariton
dispersion. In Fig. 3c, we calculate the different momentum cross points at different
graphene Fermi energies. These cross points show momentum matching, indicating that
the transmittance will be around 100%. These cross points can occur in the frequency
range of the BN HPP (1370-1460 cm™ '), while the graphene Fermi energy varies from
0.1 to 1 eV. Therefore, by changing the graphene Fermi energy from the outside, we
can achieve dynamic tunability of the transmission of polaritons in a wide frequency
range in the in-plane heterostructure.

The transmission of different polariton waves can be characterized using near-field
microscopy. In particular, s-SNOM is the most effective experimental instrument to
visualize the GP and BN HPP in real space. In a typical s-SNOM experiment, an
infrared laser beam illuminates the AFM tip of the s-SNOM. The tip can strongly
confine the laser beam at the tip apex, providing the momentum needed to launch GP
or BN HPP.’*%° When propagating polaritons reflect at a boundary, characteristic
interference patterns are formed and can be scattered into the detector by the s-SNOM
tip, and thus be measured in the near-field images. We numerically simulate a potential
s-SNOM experiment to obtain the near-field images and calculate the reflection (or
transmission) of the GP and HPP at the interface.

As previously reported, the vertical component of the electric field (£-) below the dipole
source can serve as a good qualitative approximation for the s-SNOM near-field
signal.>*%° We simulate the near-field interference patterns of the GP and HPP at the
graphene/BN boundary and a natural graphene edge (graphene/air), as shown in Fig.
4b. The latter is used as a control experiment.®’ In this simulation, |E./E-o| is adapted,
where E represents the z-component of the electric field without graphene. And the
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absorption of graphene and BN has been taken into account by retaining the imaginary
part of the graphene and BN permittivities.”® From all the near-field interference
patterns in Fig. 4b, we can observe fringes parallel to the boundaries indicating the
interference of the launched GP (or BN HPP) and the reflected GP (or BN HPP) by the
boundary, but the signal strength changes as the frequency varies.

To further analyze the near-field interference patterns, the line profiles of the fringes
are extracted along the direction perpendicular to the boundaries (Fig. 4c). The
distances between the adjacent peaks (or dips) far from the boundary are half of the
wavelength, 4,/2. Due to the finite propagation length of the GP and BN HPP, the
amplitude of the fringes decays along the graphene or BN in both directions across the
boundary. However, transmission (or reflection) at the interface is almost transient and
the energy loss of polaritons can be ignored. The reflectivity (or transmittance) can be
extracted from the near-field profiles described below. The reflection of the GP at a
natural boundary can be considered as nearly 100%.>” We calculate the difference

between peak 1 (orange dot in Fig. 4c) and dip 1 (grey dot in Fig. 4¢) in |E./E-o| profiles
(VSew )

graphene plasmon reflection can be estimated using the equationr= (Sg BN —

as the near-field signal of the graphene natural edge bright line . Finally, the

|E-0/E=01*)/(Sedge — |E-=0/E-0|*), where Sgr-pn is the near-field energy signal for the
graphene/BN interface bright line.’”*! Thus the reflections with different frequencies
are shown in Fig. 4d (as solid black circles). Then the transmittance is calculated, which

is in accordance with the results of the full wave calculations shown in Fig. 2a.

Conclusion

In conclusion, we have proposed a full-wave electromagnetic numerical model to solve
polariton transmission at the interface of the in-plane graphene and BN heterostructures,
which provides a key foundation for designing in-plane integrated optics.
Transmittance of different polaritons is inversely proportional to their momentum
difference. Changing the degree to which the momentums matched by altering the

graphene Fermi energy (between 0.1 and 1 eV) would allow polariton transmission to
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be tuned from 0% to 100% in the upper RS band of BN. Based on high-efficiency
modulation of transmittance, we further demonstrate the microscopic process of
electromagnetic transmission through simulating near-field interference patterns of
polaritons, which is in good agreement with the numerical model. The near field
interference patterns would be measured by s-SNOM, which provides a potential
experimental method to investigate the coupling of different polaritons in the in-plane
heterostructure. This study provides a new theoretical basis for investigating the in-
plane coupling of different polaritons in 2D vdW materials, and offers promise for
designing ultra-compact functional optical devices such as modulators, low loss

waveguides, and filters.
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or reflect. (b) Permittivity of the BN. (c¢) Calculated dispersion of the GP in freestanding
graphene and the HPP in freestanding BN, respectively. The Fermi energy of graphene
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the BN phonon polaritons with the total electric field (Norm E) and the electric field
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Fig. S3 Line profiles of electric field, , are at the 1390 and 1400 cm-L. The solid (dash) line

E,/E,

is extracted from the graphene/BN (graphene/air) at in Fig. 4b. The transmission in Fig. 4d can be
calculated from these data.
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In the Fig. S4, we calculate coupled transmission process in the heterostructures
with gap and overlap, respectively, and compared the results with the results of perfect
matching connection. As shown, the perfect matching connection is the optimal
situation for the energy coupling. The coupling efficiency (represented by transmission)
decreases as the gap increases due to the discontinuous boundary electromagnetic loss.
In the case of overlap, the transmission is not monotonically reduced as the overlap
region increases due to the vertical electromagnetic field coupling between the
overlapped layers, but it is certainly smaller than the transmission of the perfectly
matched connection also due to the discontinuous boundary electromagnetic loss.
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Figure S6. (a-b) The optical constant of SiO, and Al>Os, respectively. These two materials can be
used as a substrate for graphene. (c-f) The graphene plasmon dispersion relationship on different
substrates. By comparing ¢ and d, it is obvious that the frequency in the dispersion relationship
changes due to the influence of the dielectric function of the substrate. In the e and f, the dispersion
relationship has an anti-crossing phenomenon when the SiO, phonons are coupled with graphene
plasmons.

We take the most widely used SiO, and Al,Oz as examples to illustrate the
substrate’s effect, as shown in Fig. S5. On the one hand, the refractive index or
dielectric function of the substrate changes the frequency of the plasmon polariton
dispersion relationship in Fig. S5¢ and d. On the other hand, the coupling between the
phonons of the substrate and the graphene plasmons will produce an anti-crossing
phenomenon in the dispersion relationship in Fig. S5e and f. The effects of substrates
can also be found in our previous papers.l: 2 However, these effects in the graphene
plasmon dispersion would not change the calculated coupling efficiency relation as a
function of frequency in the graphene/h-BN heterostructure. The aim of this research is
to find out a method to efficiently control two different polaritons coupling, thus we did
not consider the effect of substrate in the manuscript.
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