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Abstract

Electron transport layer (ETL) plays an important role in realizing efficient and stable perovskite solar
cells (PSCs). There are continuous efforts in developing new types of low cost ETLs with improved
conductivity and compatibility with perovskite and the conducting electrode. Here, in order to obtain
high efficient and stable PSCs on ZnO:Al (AZO) substrate, reduced graphene oxide (rGO) is
incorporated into SnO, nanoparticles to form composite ETL. For planar PSC on AZO substrates,
SnO,-rGO with a low incorporation ratio of 3 wt% rGO significantly enhances the device short circuit
current density (J,.) and the fill factor when compared to the device with pristine SnO, ETL, leading
to an overall power conversion efficiency of 16.8% with negligible hysteresis. The effectiveness of the
excited charge transfer process of SnO,-rGO ETL is revealed by time-resolved photoluminescence
decay, and by electrochemical impedance spectrum measurements. Furthermore, the solar cell stability
is also enhanced due to the incorporation of rGO in the ETL. This work provides a low cost and
effective ETL modification strategy for achieving high performance planar PSCs.

Supplementary material for this article is available online
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1. Introduction

Perovskite solar cells (PSCs), with a power conversion effi-
ciency (PCE) reaching 23.3% [1], have attracted great atten-
tion in recent years. The remarkable achievement of PSC is
owing to the excellent material properties of perovskite, such
as suitable bandgap, high carrier mobility and a long diffusion
length [2-4]. The improvement of interfacial and hole/elec-
tron transporting layer also make a significant contribution to
this rapid development. TiO, is one of the most widely
adopted electron transport layers (ETLs). Nonetheless, the

fact that TiO, requires a high temperature sintering process
makes it unfavorable for practical application. Even worse,
the photocatalytic active TiO, could lead to photodegradation
of perovskite material [S]. ZnO [6-9] and SnO, [10-13] are
also being studied as alternative low cost ETL candidates. It is
reported that ZnO surface usually contains hydroxide and the
residual acetate ligands that can also decompose the per-
ovskite film, adding to the device instability [14]. Among
many n-type metal oxide, SnO, with suitable conduction band
level and excellent mobility is found to be a better electron
transportation for PSCs [15]. PSCs with SnO2 ETL has
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achieved a certified efficiency of 20% [16]. A recent report
yttrium (Y)-doped SnO, NSAs, results exhibit improved
performance with much reduced hysteresis [17]. In addition,
lithium (Li) and Stibium (Sb) doped SnO, films also have
been successfully reported [18, 19].

Here, we report our investigation on reduced graphene
oxide (rGO) incorporated SnO, ETL for PSCs on aluminum
doped zinc oxide (AZO) substrate. AZO is abundant, environ-
ment friendly and low cost transparent conducting electrodes for
optoelectronic devices. Nonetheless, PSCs based on AZO sub-
strate is reported with relative low PCE of ~13% so far [20, 21],
much lower than its ITO and FTO counterparts. The SnO,-rGO
were prepared through spin-coating SnO, and rGO mixed
solution on the AZO substrate and annealing at 180 °C in air.
The rGO possesses excellent charge transport properties, and
rGO has proven compatibility with metal oxides [22-24].
However, it has been reported previously that the amount of
GO would affect the photocatalytic properties of the SnO,-rGO
suspension solution [25]. It is suspected that with the right
amount of rGO in the composite layer, the rGO would enhance
the electron transport behavior while constrain its photo-
degradation effect on the perovskite thin film.In this study, it is
found that the addition of the right amount rGO in the SnO,
layer effectively reduce electron trap states and passivate the
AZO substrate, making the device more stable under the con-
tinuous solar illumination compared to pristine SnO,. The
device based on the 3 wt% rGO mass loading in SnO, ETL can
reach a PCE of 16.87% with reduced hysteresis.

2. Experiment

The AZO glass (R ~ 10 Q sq~ ', T ~ 85%) was cleaned by
deionized water, acetone, ethanol sequentially, and dried
by nitrogen purging. Before depositing the SnO, layer, the
AZO glass was treated by UV-Ozone for 10min The
SnO, precursor was purchased from Alfa Aesar (tin oxide,
15% in H,0)). The SnO, precursor was diluted by H,O to
3%. The rGO nanosheet (diameter ~0.5-5 um, thickness
~0.8—1.2 nm) was dissolved in GBL with 1 mg mlfl, and
then mixed with SnO, solution. The prepared suspension
solution with different rGO mass percentage (1 wt%, 3 wt%,
5 wt%) were added to the SnO, solution to form our final
precursor. The mixed precursor is stable over weeks without
any precipitation. The ETL precursor were spin-coated at
3000 rpm for 30s, followed by annealing at 180°C for
30 min. The thickness of films were evaluated by using an
alpha-step profiler, as shown in figure S1 (available online at
stacks.iop.org/NANO/30/075202 /mmedia), the average
thickness of the resulted ETLs were ~37 nm. The results
show that the introduction of a small amount of rGO has
insignificant influence on the thickness of perovskite films.
For the perovskite layer, 159 mg CH;NH;I and 461 mg of
Pbl, were dissolved in 72 ml of DMSO and 640 ml of DMF
solution. The perovskite solution was spin-coated on the
SnO, transfer layer at 4000 rmp for 10 s, and then annealed at
70°C for 10min and at 100°C for another 10 min. The
HTM solution was preparation by dissolving 72.3 mg

Sprio-OMeTAD in 1 ml chlorobenzene, 18 ul Lithium salt
solution (520 mgml~" dissolved in acetonitrile) and 28 ul
4-tert-Butylpyridine were added to Sprio-OMeTAD solution.
Finally, 80 nm of gold was deposited through a shadow mask
with 0.1 cm® by thermal evaporation. In addition, the PL
spectrum were recorded under excitation at 480 nm, and time-
resolved photoluminescence (TPRL) collected excitation at
532 nm, measurements were made by using perovskite film
deposited on glass/ETLs substrate with room temperature.

3. Results and discussion

Figure 1(a) shows the device structure of AZO/
Sn0,-rGO/CH;NH;Pbl; /Sprio-OMeTAD/Au, and  sche-
matic view of SnO,-rGO mixture. Figure 1(b) is a cross-
sectional SEM image illustrates the fabricated device. The
perovskite layer consists of the compact microcrystals with
the grain size of several hundred nanometers. A uniform
SnO,-rGO film of ~30 nm forms at the bottom of the AZO
substrate. In order to identify the impact of the rGO content
on harvesting of the perovskite layer, the optical transmittance
of SnO, and SnO,-rGO were measured as a function of rGO
content as shown in figure S2. The transmittance decreased
with increasing rGO content. It is concluded that excess rGO
content would block the light absorption of SnO, and
encourage electron—hole recombination [26]. Furthermore, we
monitored the degradation of perovskite layers deposited on
SnO,-rGO. Specifically, optical transmittance spectra of per-
ovskite thin films on SnO,-rGO coated substrate were mon-
itored against time in ambient environment with temperature
of 25°C and relative humidity of 50%. The results were
presented in the figure S3. Initially, the as deposited per-
ovskite films exhibited black color (figure S3e) and a sig-
nificant light absorption edge at about 780 nm. It is apparent
that the color of the perovskite film on SnO, layer become
yellowish after 120h, revealing very poor stability of the
perovskite on SnO, substrate. In contrast, perovskite films
with SnO,-rGO (1 wt%) and SnO,-rGO (5 wt%) shows a
slower color changing rate. It is worth to note that only slight
degradation can be observed for perovskite films deposited on
SnO,-rGO (3 wt%) after 120 h (figure S3e). To quantitative
the degradation rate, we compared the light transmittance
value at the 800 nm (759 nm) and the 750 nm (7550 o) Near
the perovskite bandgap absorption edge. The sample with
Sn0,-rGO (3 wt%) shows the highest Tgop nm/7T750 nm Value
against time, indicating perovskite thin film on SnO,-rGO
(3 wt%) has the best stability under testing condition among
these samples (figure S3f). In addition, the average surface
roughness of these SnO, films on the AZO substrates were
also characterized by atomic force microscope, which is
shown in figure S4. The AZO/Sn0,-rGO (3 wt%) surface
shows the lowest rms roughness (~58.1 nm), which is lower
than the AZO/SnO, substrate surface. To obtain optimal
doping concentration, different amount of rGO suspension
solution, with different mass percent (0, 1, 3, 5 wt%), were
added into SnO, solution (figure 1(c)).
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Figure 1. (a) Schematic representation of the typical full device structure; (b) cross-sectional SEM image of a complete photovoltaic device
based on the AZO/SnO,-rGO/CH;3;NH;Pbl; structure (scale bar: 200 nm); (c) the prepared SnO,-rGO precursor with rGO mass loading of 0,

1, 3 and 5 wt%.

Figures 2(a) and (b) compares the photocurrent density—
voltage (J-V) characteristics under AM1.5G illumination and
the external quantum efficiencies of the champion PSCs
with SnO,-rGO (3 wt%) and with pristine SnO,, respectively.
For the champion cells, the Jy. increases from 21.45 to
22.57 mA cm_z, and the fill factor increase from 57% to 73%,
due to the incorporation of rGO. As a result, the overall PCE
is enhanced from 13.9% to 16.87% (table S1). Additionally,
in the J-V characteristic (figure S5), the extracted series
resistance (R;) of the SnO,-rGO based device is ~3.78 2 cm?,
which is smaller than that of the SnO, based device
75 Q cmz). The lower R, of the SnO,-rGO ETL can be
ascribed to the higher electron mobility than that of the pure
SnO, ETL. Meanwhile, the shunt resistance (Rg,) for the
SnO,-rGO device is 2.69 k2 cm2, much larger than that of
the SnO, device (204 Q cm?), indicating a suppression of the
leakage current and reduction of recombination losses in the
SnO,-rGO device under illumination.

The external quantum efficiency (EQE) spectra of the
SnO,-rGO and SnO, devices are shown in the figure 2(b),
presenting EQE values higher than 70% for wavelength
between 450 and 750 nm in both cells. Although the integrated
Jsc is a bit lower than the results obtain from the J-V char-
acteristics due to the spectrum mismatch between equipment
and theoretical spectra data, the overall Jgc variation trend of

the two devices match well with the J~V measurement results
[27]. The device with SnO,-rGO film exhibits higher EQE,
compared to the SnO, based PSC, leading to a higher integrated
Jsc. Since the perovskite films grown on SnO,-rGO film and
SnO, film exhibits UV-vis absorbance (figure S6), it can be
inferred that the J,. enhancement mainly derives from the
improved electron transfer efficiency via rGO at the perovskite
and ETL interface. It is found that the additive of 3 wt% rGO
loading into SnO, precursor can significantly improve the
performances of the devices. In fact, the device doped with
3 wt% rGO in SnO, presents the best results, with an averaged
PCE of ~16.7% as shown in the statistic results in figure 2(c).
Figure 2(d) is a histogram of PCE over 20 devices fabricated on
the SnO, and SnO,-rGO, obtaining that the devices based on
the SnO,-rGO an average PCE of 164 + 0.4%. Hence, it is
deduced that the incorporation of rGO bring a more efficiency
and stable PSCs.

To further investigate the charge-transport kinetics at the
Sn0,-rGO/MAPDI; interface, the steady-state PL spectra and
TRPL measurement are employed. The PL spectra is collected
from perovskite films fabricated on glass/ETLs in the
figure 3(a), PL peak are observed about 780 nm for both per-
ovskite films with or without rGO. The SnO,-rGO/MAPbI; film
has a much lower PL. quantum yield than the SnO,/MAPbI;
film, indicating a higher charge extraction rate across the
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Figure 2. (a) J-V curves in forward bias and reverse bias for the best-performing PSC solar cell with the doping concentration of 3 wt%
(SnO,-rGO) and the reference one (SnO,); (b) EQE spectra of the optimal SnO, and SnO,-rGO based devices; (c) PCE distribution of the
devices with and without rGO in the SnO, ETL; (d) histograms of PCE with the doping concentration of 3 wt% (SnO,-rGO) and the

reference SnO, ETL.

interface between the SnO,-rGO and MAPbI; The TRPL was
measured, adopting the same structures as used for the PL
measurements. The TRPL results of devices based on SnO, and
SnO,-rGO ETL are presented in figure 3(b). The two TRPL
curves can be fitted by a bi-exponential equation [27, 28]:

f() =Ae/" 4 Aye /™ 4 B, ey

where the terms A, A, are the decay amplitude, B is the
constant for the base-line offset, 7 is the decay time. The decay
portion including a fast decay (7;) component reflects the
quenching of free carriers in the interface between the per-
ovskite and ETL, and a slow decay (7,) component represents
the recombination of free carriers in radiative channels [28].
The PL decay of the perovskite deposited on the SnO, film
presents a fast decay lifetime (77) of 31 ns and a slow decay
lifetime (7,) of 6.4 ns. In contrast, for the SnO,-rGO/MAPbI;
film, the fast decay lifetime and the slow decay lifetime are
both shortened, with extracted values of 23ns and 5.2 ns
respectively. The faster PL quenching rate indicates a faster
charge transfer rate at the SnO,-rGO/MAPbI; junction inter-
face. The PL spectra and the TPRL results are consistent with
our finding from I~V and EQE measurements, suggesting that
the addition of the rGO in the SnO, ETL, the J. is improved.

A space-charge limited current (SCLC) measurements were
also carried out to evaluate the electron mobility of SnO,-rGO

ETL, the results of which are shown in figure 3(c). We have
fabricated device with AZO/SnO,-1GO/MAPbL;/PCBM/
BCP/Au configuration for electron transport investigation. The
I-V curves from electron-transport-only measurements can be
cataloged into three regions according to the value of the
exponent n [29], i.e. n =1 is the ohmic region, n =2 is
the SCLC region, and the intermediate region between 1 and 2 is
the trap-filled limited region. In the SCLC region, the electron
mobility of the PSCs with SnO,-rGO film can be evaluated on
the basis of the Mott—Gurney law [29]
2
J = gsoeu%,
where V is the applied voltage, d is the thickness of the ETLs, £
is the dielectric constant of the SnO, (12.5) film and p is the
electron mobility. The estimated electron mobility of 3.3 x
102 cm? V™! s7! can be obtained from the equation (2) from the
device based SnO,-rGO film, which is about 5 times higher than
that of the SnO, based device (7 x 10™* ecm?>V~'s™1). The
magnitudes of our mobility values are in the same order to those
reported in reference [30]. The SCLC results further confirms
that the photogenerated charge carriers are more efficiently
transferred via the SnO,-rGO ETL than the pristine SnO, ETL.
Dark current measure is a method to evaluate charge carrier
loss through leakage pathways and the recombination of free
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Figure 3. (a) Photoluminescence emission spectra of AZO/SnO,/perovskite and AZO/SnO,-rGO/perovskite; (b) TRPL of CH;NH;Pbl;
contacted with different interfaces: SnO,, SnO,-rGO; (c) I-V characteristics of the AZO/SnO,/CH3;NH;Pbl;/PCBM/BCP/Au and
AZO/SnO,-rGO/CH;NH; Pbl;/PCBM/BCP/Au; (d) J-V curves for the best-performing PSC solar cell with the doping concentration of
3 wt% (SnO,-rGO) and the reference one (SnO,) in the dark. Electrochemical impedance spectroscopy of PSC based on SnO, and SnO,-rGO

films under the dark (e) and illumination condition(f).

carriers in devices. Figure 3(d) shows the dark I~V curves for the
best PSCs with SnO, and with SnO,-rGO, the J-V characteristics
in dark can be described by the Shockley diode equation [31]:

qV)
J = Jo|exp| L= - 1
0[ p(nKT ]

where Jj, is the saturation current density, V is the applied voltage,
n is the ideality factor, T is the temperature and K is the Bolt-
zaman constant. The dark curves show typical diode properties,

3)

with a transition to the SCLR at the build in voltage (V};). The
ideality factor can be determined from the slope of the
exponential regime on the semi-logarithmic plot and can be

denoted as:
-1
. ( ) |

In the equation (4), n of the device with SnO, has a value
of 3.7, which is higher than that of the device with SnO,-rGO

kT 91nJ
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Figure 4. (a) SnO, (curve a) and SnO,-rGO (curve b) ETLs based PSCs under continuous solar illumination; (b) devices stability with SnO,

and SnO,-rGO ETL in the glove box without capsulation.

of 2.7. n extracted value are significantly large than 1 for both
devices, demonstrating that trap assisted recombination
plays a mass of role in the recombination process [30].
However, PSC based SnO,-rGO ETL showed an n value
and a R, (1.17 Q cmz) smaller with regard to the SnO, ETL
(8.7 Qcm?®). Suggesting a decreased trap state density at
AZO/Sn0; interface when rGO is added to SnO,. According
to equation (3), it can be obtained that the J, of the device
without rGO is 6.32 X 107> mA cm_z, which is one order of
magnitude large than that of the device with SnO,-rGO is 1.3
x 10 mA cm 2. This decrease in Jo indicates that carrier
recombination is suppressed by the use of rGO. It is suspected
that the rGO helps in forming a more compact ETL by filling
the voids that originated from SnO, nanoparticle aggrega-
tions, thus reducing the leakage paths by preventing the
perovskite layer from direct contacting the AZO surfaces.
To further reveal the role of the rGO in SnO, film, elec-
trochemical impedance spectroscopy analysis was applied to
the devices with SnO, and SnO,-rGO ETL under dark and
illumination conditions with a bias voltage of 0.1 V. The
Nyquist curves of both devices under dark condition have been
plotted in figure 3(e), with an equivalent circuit shown as inset
diagram. The resistance R can be extracted from the inter-
sections of these arcs, corresponding to the resistance of AZO/
ETLs and HTLs/Au. The resistance R, from the high fre-
quency arc regime mostly attributed to the transport resistance
of ETLs/Perovskite/Spiro-OMeTAD layers [32, 33]. The fit-
ted value of the ohmic resistance (R;) and charge transfer
resistance (Ry;) in the figure 3(e). The R, of the device based on
SnO, PSCs is 1086 2, and the R, of the device based on
Sn0,-rGO is 522 €). The device based SnO,-rGO exhibits the
smaller charge transfer resistance suggests that electron trans-
port faster at the SnO,-rGO/Perovskite interface. Figure 3(f)
shows the Nyquist plots of both SnO, and SnO,-rGO based
device under illumination condition. The resistance from lower
frequency arc is related to the recombination resistance (Ry..).
The R, of the SnO,-rGO device is 769.1 €2, and the R, of the
SnO, device is 358.8 2. The calculated values of the charge
transfer resistance (R) using the inset equivalent circuit is

373.1 Q for the device based on SnO,-rGO, which is much
lower than the device based on SnO, with 710.4 Q. The carrier
diffusion length L, can be estimated by [34]

1
L, = (h)z L,

Rtr
where R... is the recombination resistance, Ry is the charge
transfer resistance, L is the layer thickness. According to the
equation (5), with similar L in the devices, the large R, and
small R, in solar cell decrease the possibility for electron-hole
recombination.

In order to confirm light stability, the light stability
measurements on the PSC were investigated. The J-V mea-
sure of PSC with SnO,-rGO electron transfer layer under
different continuous illumination time from 100 to 1000 s
were measured and presented in the figure 4(a). The SnO,
based PSC degrades with time rapidly, with PCE decreasing
from ~12% to 11% within 1000 s. The most prominent decay
is obtained in the plot of V. (in the figure S7). In contrast,
upon light exposure, the SnO,-rGO device remains more
stable with PCE above 16% for more than 1000s. The sta-
bility of devices was also tested as a function of storage time
in the glove box without capsulation. The PCE is plotted
independently in the figure 4(b) to reveal the stability of the
devices clearly. The SnO,-rGO device, the PCE keep 80%
after 300 h while PCE of the SnO, device drops down to
<50%. It is worth noting that the stability of PSCs was tested
under AM. 1.5G as light source. The results confirm that the
SnO,-rGO based PSCs is more stable than the SnO, device.

The enhanced stability of PSC may be ascribed to the
passivation effect of rGO at the interface. For example, the
surface of the AZO and low temperature solution processed
SnO, contain many trap states originated from oxygen
vacancies [35], which leads to decomposed of perovskite at
the interface and increase carrier recombination. The rGO is
suspected to distribute at the boundary of SnO, nanocrystals
and passivate the electron traps of the SnO, and the AZO
surface.

&)



4. Conclusion

In this study, we have synthesized a new way to improve the
performance of planar n-i-p PSCs by adding rGO of 3 wt%
into SnO,. The addition of rGO resulted in a high efficiency
of 16.87% with a very reduced hysteresis, and the devices
deposited on the AZO substrate and treated below 180 °C. In
addition, the increased J,. of the device based on SnO,-rGO,
which attributes to effective electron extraction from per-
ovskite to AZO. On the other hand, the rGO doped SnO, can
effectively improve the device stability is due to the stabili-
zation of AZO/SnO; interface. The introduction of rGO in
SnO, is a simple and effective way to improve device
performances.
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