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ABSTRACT: Micron-thick BN films are prepared on 2 in. c-plane sapphire substrates using l ow-pressure halide vapor phase epitaxy,
with BCl3 and NH3 being utilized as the respective sources of boron and nitrogen. The morphology and crystal quality of BN films
grown at temperatures ranging from 1050 to 1650 °C are systematically i nvestigated. X-ray diffraction analysis demonstrates that the
synthesized films are primarily oriented along the [0002] direction of hexagonal boron nitride (h-BN), although a small amount of
turbostratic BN i s also observed. Scanning electron microscopy measurements reveal a t ypical l ayered stacking morphology i n t he
cross section of h-BN films. As the growth temperature rises, h-BN has a tendency to transition f rom a 3D to a 2D growth mode, as
seen by t he c oalescence of h-BN nanograins t o f orm s mooth micron-scale t riangular grains. Transmission electron microscopy
characterization s hows t hat t hese t riangular g rains a re well-crystallized [ 0002]-oriented h-BN phases, with minor v ariations i n
crystallographic orientations among i ndividual grains. While t hese micron-scale t riangular grains have not yet coalesced i nto l arger
grains, f urther r efinement of t he growth conditions holds t he potential t o i nduce t heir coalescence, r esulting i n t he f ormation of
continuous t hick h-BN films with high crystal quality.

■ INTRODUCTION
Hexagonal b oron n itride ( h-BN) i s a I II−V n itride,
characterized b y a wide b and g ap of 6 .0 e V,1 making i t a 
highly p romising c andidate f or u se i n d eep u ltraviolet
optoelectronics a nd h igh-power e lectronics.2 h -BN e xhibits
excellent mechanical properties, a l ow dielectric constant, and
remarkable h igh-temperature s tability.3 I t h as a l ayered
structure s imilar t o graphite and i s held t ogether by van der
Waals ( vdW) f orces.4 Moreover, d ue t o t he s mall l attice
mismatch ( 2%) b etween h -BN a nd g raphene, a tomically
smooth s urfaces, a nd t he a bsence of dangling bonds, h-BN
serves a s a s uitable s ubstrate material f or g raphene-based
devices.5 Furthermore, t here has been s ignificant i nterest i n
neutron detectors,6 spin characteristics,7 and flexural electrical
effects utilizing l arge-sized h-BN single crystals.8 However, t he
size o f h -BN b ulk s ingle c rystals s ynthesized b y n ickel−
molybdenum solvents at atmospheric pressure or prepared by
high-temperature a nd high-pressure l iquid-phase r eactions i s
typically c onstrained t o a f ew h undred microns.9 Conse-
quently, t he f abrication of s ingle-crystalline h-BN t hick films
(≥1 μ m) o n l arge-sized s ubstrates ( ≥2 i n.) l ike s apphire,

silicon, and silicon carbide stands as a viable alternative to bulk
crystalline materials.10 Nevertheless, t he s ynthesis o f l arge,
thick, s ingle-crystal v dW materials r emains a s ubstantial
challenge due t o t he absence of out-of-plane chemical bonds,
which weakens the epitaxial relationship between adjacent
layers.1            1

Metal−organic chemical vapor deposition,12 molecular beam
epitaxy,13 i on beam s puttering deposition,14 a nd s ubmicron-
spacing vapor deposition15 have been confirmed to be capable
of growing h igh-quality f ew-layer h -BN fi lms, while t heir
limited growth r ate makes t hem unsuitable f or t he r apid and
cost-effective preparation of l arge-size single-crystal h-BN thick
films (≥1 μm). Previous research has shown t hat halide vapor
phase epitaxy ( HVPE) i s a v iable a pproach f or r apidly
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fabricating t hick films of l arge-size single-crystal I II−V nitride
semiconductors l ike GaN and AlN.16 For t he growth of h-BN
by HVPE, boron t richloride (BCl3) and ammonia (NH3) are
employed as source gases, taking i nto consideration the current
commercial utilization of this combination for the rapid growth
of pyrolytic BN.17 To achieve t he epitaxial growth of s ingle-
phase h-BN, i  t i s essential to effectively address these three key
challenges: p arasitic r eactions a mong t he s ource g ases, t he
exceedingly high growth t emperature, and t he availability of a
suitable substrate.18 Specifically, the strong B−N bonds l ead to
the s usceptibility o f p arasitic r eactions b etween B Cl3 a nd
NH3.

19 Amano has i ntroduced pulse-mode growth techniques,
enhancing t he s urface migration o f a dhering a toms a nd
consequently r educing p arasitic g as-phase r eactions.20 F ur-
thermore, e xperimentally d etermined h igh g rowth t emper-
atures h ave b een i dentified a s a p rerequisite f or a chieving
single-phase h-BN, as evidenced by t he successful synthesis of
high-quality b ulk h -BN a t e levated t emperatures o f a round
1500 °C.21 Despite t he l arge l attice mismatch between h-BN
and s apphire s ubstrates, s apphire s ubstrates a re c ommonly
used a s i ndustrial-grade l arge-scale wafers i n s emiconductor
materials. Therefore, producing l arge h-BN films on s apphire
substrates remains necessary. Currently, t here i s l ittle research
on the preparation of h-BN films using HVPE, and the growth
mechanism i s not yet well-established, l eaving ample room f or
significant i mprovement i n crystal quality. In 2013, Coudurier
et al. used high-temperature HVPE t o grow a 2 μm-thick BN
layer on an AlN/sapphire t emplate at 1600 °C,22 and t he BN
film exhibited a disordered t urbostratic phase, with a c-lattice
parameter of 6.78 Å, much greater than the value of the single-
crystal h -BN.12 Our g roup h as a lso c onducted p reliminary
investigations i nto t he HVPE growth of h-BN micron films.
The experimental results revealed that under l ow-pressure and
high-temperature c onditions, t he c rystalline quality of h-BN
reaches i ts optimal l evel at a V/III ratio of 6.23 I n addition t o
the V/III ratio, the growth temperature significantly i nfluences
the s urface migration of precursors, which i n t urn affects t he
morphology and crystal quality of h-BN.
In this study, l  ow-pressure and high-temperature HVPE was

used t o g row h -BN micrometer fi lms o n c -plane s apphire
substrates, with BCl3 a nd NH3 a s t he precursor g ases. The

influence of growth t emperature on t he s urface morphology
and c rystal q uality o f h -BN was i nvestigated. The micro-
structural characteristics of t riangular grains on t he s urface of
the h-BN film were comprehensively s tudied by t ransmission
electron microscopy (TEM).

■ EXPERIMENTAL SECTION
A homemade high-temperature HVPE apparatus was used t o
grow h-BN, which could be heated t o 1650 °C via i nduction
heating. N2, employed as a dilution and carrier gas, had a flow
rate of 1 slm (standard l iter per minute). BCl3 and NH3 were
used as boron and nitrogen sources, r espectively. To f acilitate
the s urface migration of adatoms and diminish parasitic gas-
phase r eactions, NH3 pulses were i ntroduced.24 A single NH3
pulse cycle l asts f or 60 s, with NH3 flowing f or t he first 20 s,
followed by no NH3 i nput for the subsequent 40 s. In contrast,
BCl3 w as c ontinuously i ntroduced t hroughout t he e ntire
growth process. The s ubstrate was a 2 i n. c -plane s apphire
wafer, which was placed on a graphite s usceptor. All s amples
maintained t he same pressure (<100 Pa) and V/III r atio (6),
with the only difference being the growth temperature (ranging
from 1050 t o 1650 °C).
The morphology o f t he h -BN fi lms was measured b y

scanning e lectron microscopy ( SEM) ( TESCAN MAIA3
XMU). The crystallinity of t he h-BN films was characterized
by X-ray diffraction (XRD) (Bruker D8 ADVANCE). Raman
spectroscopy (LabRAM ARAMIS) was i ntroduced to measure
the vibrational mode of B−N bonds i n t he h-BN films. The
microstructure of h-BN grains was a nalyzed by TEM (JEM-
2100Plus).

■ RESULTS AND DISCUSSION
We first i nvestigate the i nfluence of growth temperature on the
morphology o f BN b y S EM. As d epicted i n Figure 1 , t he
surface of t he BN film g rown a t 1 050 ° C i s c overed with
nanograins t hat a re a pproximately 1 00 n m i n s ize. As t he
growth t emperature i ncreases, t hese nanograins coalesce i nto
smooth t riangular g rains. At 1 450 ° C, t he t riangular g rains
reach their maximum size of about 1 μm, i  ndicating that l ateral
development occurs more f requently under t his condition due

Figure 1. Surface SEM i mages of h-BN films grown at different temperatures. (a) 1050 °C. (b) 1200 °C. (c) 1300 °C. (d) 1400 °C. (e) 1450 °C.
(f) 1500 °C. (g) 1550 °C. (h) 1650 °C. The scale bar i s 1 μm.
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to the enhanced surface migration of precursors.17 However, as
the growth t emperature i s f urther i ncreased, both t he size and
density o f t he t riangular g rains d ecreased, e ventually
disappearing a t 1 650 ° C, a s i llustrated i n F igure 1 f−h.
Subsequent s ections will provide a n i n-depth understanding
of t he c rystallinity and orientation of t hese t riangular grains.
The a forementioned r esults r eveal t hat b y e nhancing t he
growth temperature, BN exhibits a tendency to transition f rom
a 3 D g rowth t o a 2 D g rowth mode. However, s olely
manipulating t he g rowth t emperature i s n ot s ufficient t o
achieve c omplete 2 D c ontinuous g rowth o f B N. We a re
currently attempting t o adjust other growth parameters, s uch
as the V/III ratio, pressure, carrier gas, etc., i n order to obtain a
smooth and continuous BN film. Additionally, cross-sectional
SEM i mages ( Figure 2) demonstrate t hat t he BN films a re
stacked i n l ayers a nd t he g rowth r ate ( Figure S 1) o f BN
increases with rising t emperature. Nevertheless, t he l ayer of h-
BN a ppears r ough, p ossibly a ttributed t o t he p resence o f
turbostratic B N ( t-BN) a nd a morphous B N ( a-BN).25

Furthermore, t he wrinkling d eformation o f t he B N l ayers
may be caused by i nternal compressive s tress and t he l oss of
interlayer covalent bonds i n t he BN film.26 Notably, t he BN
film has detached f rom t he sapphire substrate, possibly due t o
stress i ntroduced during t he postgrowth cooling process.
XRD i s used t o assess t he crystallinity of t he BN films. As

illustrated i n Figure 3, XRD 2-theta scan patterns of all samples
exclusively e xhibit d iffraction p eaks c orresponding t o h -BN
(0002) (26.7°) and (0004) (55°) diffraction peaks along with
a sapphire (0006) diffraction peak at 41.8°.
This r esult i ndicates t hat t he s ynthesized film i s primarily

oriented along t he [0002] direction of h-BN, with an epitaxial
relationship o f [ 0002]h‑BN/[0002]sapphire. A s i llustrated i n
Figure 4 a, t he ( 0002) d iffraction p eak o f t he h -BN fi lm
grown at 1050 °C appears broad and weak, s uggesting either
poor c rystal quality or a v ery t hin film. As t he t emperature
rises, t he h -BN ( 0002) diffraction p eak b ecomes narrower.
Notably, a d istinct h -BN ( 0004) d iffraction p eak b ecomes
visible at 1450 °C, i ndicating an enhancement i n t he crystal
quality of h-BN r elative t o l ower t emperatures.
Raman spectroscopy i s utilized to i nvestigate t he vibrational

modes o f t he h -BN l attice r esulting f rom b ond s tretching
between boron a nd nitrogen a toms. As s hown i n Figure 4,
Raman peaks of all h-BN samples are l ocated i n t he r ange of

1368−1370 c m−1, which c orresponds t o t he E2g v ibrational
mode of h-BN. Compared t o t he s tress-free s tate, where t he
E2g vibration peak i s 1366 cm−1,27 t  he E2g peak of t he h-BN
film s hifts t o a higher phonon f requency. This s hift i s l ikely
induced by compressive stress arising f rom the cooling process
after growth.28 The f whm of each sample f alls within the range
of 20−50 cm−1, i ndicating t he presence of t he t -BN phase or
nanocrystals within t he h-BN films.29

A systematic i nvestigation of the orientation and crystallinity
of t riangular grains on t he surface of h-BN i s conducted using
TEM. TEM s amples are prepared f rom h-BN films grown at

Figure 2. Cross-sectional SEM i mages of h-BN films grown at different t emperatures. (a) 1050 °C. (b) 1200 °C. (c) 1300 °C. (d) 1400 °C. (e)
1450 °C. (f) 1500 °C. (g) 1550 °C. (h) 1650 °C. The scale bar i s 500 nm.

Figure 3 . XRD 2 θ s canning o f h -BN fi lms g rown a t d ifferent
temperatures. (a) 1050 °C. (b) 1200 °C. (c) 1300 °C. (d) 1400 °C.
(e) 1450 °C. (f) 1500 °C. (g) 1550 °C. (h) 1650 °C.
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1450 °C, as shown i n Figure 5a. Specifically, TEM samples are
obtained by s ectioning a long t he white dashed l ine using a 
focused i on beam ( FIB), which i ntersects s everal t riangular
grains. As e vident f rom t he c ross-sectional TEM i mage i n
Figure 5b, the cross sections of t riangle grains marked by I, II,
III, IV, and V exhibit an i nverted triangle shape with a depth of
approximately 1 μ m. I t i s worth n oting t hat t he i nverted
triangular g rains d o n ot d irectly n ucleate o n t he s apphire
substrate but a ppear a fter a c ertain period of h-BN growth.
Selected a rea e lectron d iffraction ( SAED) i s u tilized t o
ascertain t he e pitaxial r elationship b etween t he h -BN fi lm
and t he s apphire s ubstrate. The SAED pattern i s t aken f rom
the h-BN/sapphire i nterface, where t he i ncident a zimuth i s
[10−10]sapphire. As i llustrated i n F igure 5 c,d, t he s apphire
substrate diffraction s pots conform t o t he [10−10] zone-axis
diffraction p attern, whereas t he h -BN fi lm d iffraction s pots
exhibit a r inglike pattern, i ndicating t he presence of t he t -BN
and a -BN p hase within t he fi lm. I n F igure 5 d, t he most
prominent d iffraction r ing c orresponds t o h -BN ( 0002),
suggesting t hat t he h-BN film i s composed of a multitude of
rotated a nd t wisted s ubgrains o riented a long t he [ 0002]
direction. I n t he ( 0002) d iffraction r ing, t he s pots i n t he
vertical d irection a re b righter t han i n a ny o ther d irection,
indicating t hat t he majority of h-BN s ubgrains have a [0002]
orientation a long t he v ertical d irection, which p arallels t he
[0002] d irection o f s apphire. Consequently, t he e pitaxial
relationship b etween h -BN a nd s apphire i s [ 0002]h‑BN/
[0002]sapphire, c onsistent with t he XRD d ata i n F igure 3 .
Furthermore, i n t he high-resolution TEM ( HRTEM) i mage
(Figure 5e), a 5 nm-thick amorphous l ayer separates the h-BN

Figure 4 . R aman s pectra o f h -BN fi lms g rown a t d ifferent
temperatures. ( a) 1050 ° C. ( b) 1200 ° C. ( c) 1300 ° C. ( d) 1400
°C. (e) 1450 °C. (f) 1500 °C. (g) 1550 °C. (h) 1650 °C.

Figure 5. TEM characterization of the h-BN film grown at 1450 °C. (a) Surface SEM i mage of the h-BN film grown at 1450 °C, where the cutting
line goes through several triangle grains. (b) Cross-sectional TEM i mage of the h-BN film i n (a) and arrows representing t he [0002] direction of
the h-BN grain. (c) SAED pattern taken f rom the black circle i n (b). (d) SAED pattern taken f rom the h-BN film. (e) HRTEM i mage taken f rom
the black circle i n (b).
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film f rom t he sapphire substrate. This l ayer must have f ormed
after t he i nitial h -BN d eposition, a s t he u pper h -BN l ayer
exhibits a well-defined e pitaxial r elationship with t he under-
lying s apphire s ubstrate.30 The f ormation of t his a morphous
layer i s l ikely r elated t o t he decomposition of t he s apphire
substrate a t h igh t emperatures.31 Additionally, t he ( 0002)
lattice of h-BN i s ordered during t he i nitial s tages of growth
but becomes disordered after deposition exceeds 10 nm. This
phenomenon a rises s ince h-BN, being a vdW material, l acks
out-of-plane chemical bonds, t hereby weakening t he epitaxial
relationship between adjacent l ayers and making i t difficult t o
achieve t hick single-crystal h-BN films.
The i nternal s tructure of t riangular grains i s c haracterized

using SAED a nd HRTEM. As s hown i n Figures 6a a nd S2,

while t hese t riangular g rains d o n ot e xhibit c omplete 2 D
electron diffraction patterns, diffraction s pots along t he h-BN
[0002] direction are discernible, i ndicating the growth of these
triangular grains along t he [0002] direction. Furthermore, t he
[0002] orientations of t hese grains a re not entirely i dentical
with a maximum deviation of 30°. Apart f rom t he diffraction
spots a long t he [ 0002] direction, diffraction s pots i n other
directions a re w eaker o r e ven a bsent, l ikely d ue t o t he
curvature of the h-BN film disrupting the 2D l attice symmetry.
HRTEM i mages i n Figures 6b and S2 s how t hat t he (0002)
crystal f aces o f t hese t riangular g rains a re h ighly o rdered,
indicating e xcellent c rystallinity. Notably, i n t he HRTEM
image of grain I (Figure 6b), the region within the dashed l ines
appeared amorphous, possibly a result of weak i nterlayer forces
leading t o l ayering within t he film. Although t he i nteriors of
these t riangular grains a re s ingle-crystal h-BN, t heir bottoms
are d isordered a nd p olycrystalline, a s s hown i n Figure S 3.
Currently, the transformation of the film f rom a polycrystalline
phase t o s ingle-crystal h-BN i s not well-understood. I f t hese
single-crystal t riangular grains with [ 0002] orientation c ould
further expand l aterally and coalesce i nto a continuous film, i t
might be possible t o obtain t hick s ingle-crystal h-BN films.
Further r esearch i s needed t o e xplore how t o s uppress t he
generation of t-BN and a-BN phases, promote the coalescence
of h -BN g rains, a nd t hus a chieve h igh-quality t hick s ingle-
crystal h -BN fi lms. We b elieve t hat t he k ey t o o btain a 
continuous h-BN film i s to promptly induce the transition of h-
BN growth f rom a 3D mode t o a 2D mode. To expedite t his
transition, i t i s essential t o f urther i ncrease t he migration r ate
of B atoms and r educe parasitic r eactions between B and N
sources. Therefore, n ext, we will t ry t o u tilize a g rowth
interruption method or flow modulation epitaxy,26,32 where B

and N sources are alternately i ntroduced i nto the reactor. This
will f urther e nhance a datom s urface migration a nd r educe
parasitic g as-phase r eactions, p otentially a llowing f or t he
growth of l arger-sized h-BN single-crystal t hick films.

■ CONCLUSIONS
In conclusion, (0002) h-BN micrometer films are prepared on
c-plane s apphire u sing l ow-pressure a nd h igh-temperature
HVPE. T he s ynthesized fi lms e xhibit a p redominant
orientation along t he [0002] direction of h-BN and a t ypical
layered cross-sectional morphology. As the growth temperature
rises, h-BN nanograins on t he s urface c oalesce i nto s mooth
triangular grains, and t heir dimension r eaches micrometers at
1450 °C. These t riangular grains are well-crystallized [0002]-
oriented h -BN s ingle c rystals, a s c onfirmed b y S AED a nd
HRTEM. The t riangular grains are not f ormed directly f rom
the sapphire substrate but rather appear during t he process of
growth. I f t hese t riangular grains c ould e xpand l aterally a nd
merge i nto films, i t i s anticipated that thick single-crystal h-BN
films will be produced with l arge dimensions.
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