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Abstract: Herein, a series of novel long afterglow nanophosphors BaYAl3O7:Eu2+, Nd3     + w  as syn-
thesized by the combustion method. The investigation encompassed the characterization of X-ray
diffraction, morphology, chemical valence, elemental composition, and photoluminescence behavior
of BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ nanoparticles. Under 365 nm excitation, BaYAl3O7:Eu2+

and BaYAl3O7:Eu2+, Nd3     + s  how emission bands centered at 497 nm and 492 nm, which are at-
tributed to the 4f65d→4f7 transition of Eu2+ i ons. The optimal samples of BaYAl3O7:0.03Eu2+ and
BaYAl3O7:0.03Eu2+, 0.02Nd3         + h  ave average fluorescence lifetimes of 850 ns and 1149 ns, respectively.
The co-doping of Nd3+ i ons as the trap centers produced long afterglow luminescence properties,
and the afterglow time could reach up to 8 min. Furthermore, the fluorescent powder can be mixed
with polyacrylic acid to prepare anti-counterfeiting inks; a clover pattern and snowflake pattern have
been successfully printed using screen printing technology, proving its potential application in the
field of anti-counterfeiting.
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1. Introduction

Long afterglow luminescent materials are a class of materials with special luminescent
properties. The phosphors can absorb light energy for a short period and continue to emit
light for a few seconds to a few days even after stopping external excitation [1,2]. First,
because of their unique environmental protection, energy saving, and other characteristics,
application potential of the materials is considered in lighting, security signs, night display,
anti-counterfeiting, and other fields [3–8]. Second, long afterglow luminescent materials
usually have tunable luminescent colors, which can be adjusted by adjusting the material
composition, crystal structure, and doping ions to reach diverse luminescent effects. I n
addition, these materials usually have good chemical stability and optical properties and
are suitable for use under various environmental conditions. Since 1996, when the first
report appeared about t he strong l ong afterglow l uminescent materials SrAl2O     4  : Eu2+,
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Dy3+, long afterglow rare-earth luminescent materials have been widely investigated. In
SrAl2O4:Eu2+, Dy3+ phosphor, Eu2+ serve as the luminescence center, while Dy3+ i ons are
thought to strongly enhance the sustained luminescence intensity [9,10].

Long afterglow luminescent materials often have two sorts of centers: emission centers
and trap centers [11]. When stimulated by external energy, these emitting centers operate as
photoactive centers, radiating in the visual range. Trap centers, on the other hand, which are
accompanied by lattice defects, store energy and gradually release it to the emission centers
once excitation has stopped. The color of the light emitted is usually determined by the
emission center. As we all know, Eu2+ i ons as efficient activators are common ions widely
studied in the field of long afterglow materials [12–15]. In addition, to obtain or improve the
long afterglow performance, one of the most common methods is by co-doping with RE3+

ions. It produces new traps or changes the inherent trap properties by non-equivalent substi-
tution. In recent years, several remarkable long afterglow phosphors were developed using
this strategy. F or example, CaAl2O4:Eu2+, Nd3+ ( blue), Sr2MgSi2O7:Eu2+, Dy3     + (  blue),
SrAl2O4:Eu2+, Dy3+ ( green), Ca2BO3Cl:Eu2+, Dy3+ ( yellow), Ca3Si2O7:Eu2+, Sm3+/Tm3     +

(orange), CaS:Eu2+, Tm3+ (red), Sr5(PO4)3Cl:Eu2+, Nd3     + (  NIR) [9,16–21], etc. Furthermore,
various synthetic processes, including sol-gel, combustion, and co-precipitation, have been
used to synthesize these long afterglow luminescent materials [22–25]. Among these, the
combustion method is simple to use, appropriate for high-volume and low-cost preparation,
and permits the synthesis of nanoparticles with controlled shape and particle size at lower
temperatures [11,26].

In this study, a novel BaYAl3O7:Eu2+, Nd3     + l  ong afterglow phosphor was prepared by
the combustion method. Its photoluminescence (PL), optical band gap (Eg), thermolumines-
cence (TL), long afterglow properties, etc., were investigated. Then, the anti-counterfeiting
inks were prepared, showing their potential applications in the field of anti-counterfeiting.

2. Experimental Section
2.1. Materials and Method

A series of Ba0.5 – 0.5x – 0.5yY0.5 – 0.5x – 0.5yAl3O7: xEu2+, yNd3      + (  x = 0, 0.02, 0.03, 0.04, 0.05,
0.06; y = 0.01, 0.02, 0.03, 0.04, 0.05) samples was prepared by the combustion method. The
raw materials used were BaCO3 (purity: 99.99%), Y(NO3)3 (99.99%), Al2O3 (99.99%), Eu2O3
(99.99%), Nd2O3 (99.99%), HNO3 (80%), and urea (99.99%), which were all purchased from
Tianjin Chemical Reagent Factory. All reagents were directly used as received without
further purification.

2.2. Synthesis of Nanomaterials

First, appropriate amounts of HNO3 and deionized water were added t o BaCO3,
Y(NO3)3, Al2O3, Eu2O3, and Nd2O3 to prepare 0.2 mmol/mL of Ba(NO3)2, 0.5 mmol/mL
of Y(NO3)3, 1 mmol/mL of Al(NO3)3, 0.1 mmol/mL of Eu(NO3)3, and 0.5 mmol/mL of
Nd(NO3)3 solutions, respectively. Then, Ba(NO3)2, Y(NO3)3, Al(NO3)3, Eu(NO3)3, and
Nd(NO3)3 solutions were measured in stoichiometric ratios and placed in a crucible, then
2.2 g of urea for the combustion agent was added and mixed homogeneously, and placed in
a muffle furnace preheated to 600 °C. After waiting for 3–5 min, a loose white and porous
solid powder was obtained. Ultimately, the obtained samples were naturally cooled to
room temperature and ground into powder for a test.

2.3. Preparation of Anti-Counterfeit Ink

The fluorescent powder was introduced into the mixture of ethanol and polyacrylic
acid, where the volume ratio of fluorescent powder to the mixed solution was 3:1, followed
by a long time of stirring. The amount of polyacrylic acid and ethanol is adjusted to achieve
a suitable viscosity for screen printing to obtain the final fluorescent ink. Figure 1 provides
a schematic diagram of the preparation of phosphors and screen printing.



Figure 1. Schematic diagram of ink preparation and screen printing.

2.4. Characterizations

The crystalline phases were determined by X-ray diffraction (D/Max-2400 by Rigaku,
Tokyo, Japan) analysis with Cu Kα radiation (λ = 1.54 Å). The binding energy was obtained
with x-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB 250 XI,
Waltham, MA, USA). The photoluminescence excitation (PLE) and PL spectra were mea-
sured by a fluorescence spectrometer (FluoroMax-4, F4700, Hitachi, Tokyo, Japan) equipped
with a Xe lamp. The morphology of phosphors was observed through scanning electron
microscopy (Quanta 250 FEG, Hitachi, Tokyo, Japan). The sample’s l uminescence was
measured with a UV lamp supplied by HUNNENGSHI. The fluorescence lifetime and af-
terglow decay curves of phosphors were measured by a transient steady-state fluorescence
spectrometer (FLS1000, Edinburgh Instruments, Edinburgh, UK). The UV-Vis absorption
spectra were obtained using a UV-3600 UV-Vis Near Infrared Spectrophotometer (Shimadzu
Corporation, Kyoto, Japan). The energy-dispersive X-ray spectroscopy (EDS, SU8020, Hi-
tachi, Tokyo, Japan) spectrum was obtained with a desktop scanning electron microscope
energy dispersive spectrometer (Phenom Pro X, Thermo Fisher Scientific, Landsmeer, The
Netherlands). The TL was tested with a thermal spectrometer (FJ-427A, China National
Nuclear Corporation, Tianjin, China) at a heating rate of 1 °C/s.

3. Results and Discussion
3.1. XRD Patterns and Morphology Analysis

The X-ray diffraction (XRD) patterns of BaYAl3O7:xEu2+(x = 0, 0.02, 0.03, 0.04, 0.05,
0.08) nanophosphors obtained by calcining at 600 °C are presented in Figure 2a. The infor-
mation regarding BaYAl3O7 (abbreviated as BYAO) is not found in the present literature.
Figure 2a exhibits the XRD patterns of the BYAO hosts, doped BYAO samples, and stan-
dard cards of the BaAl2O4 (PDF#00-017-0306) and Y3Al5O12 (PDF#01-073-1370) [27,28]. It
is observed that the sample has a mixture phase structure and the diffraction peaks match
well with the standard cards of the BaAl2O4 and Y3Al5O12. Generally, it is reasonable to
assume that the Eu2+ dopants tend to occupy the Ba2+/Y3   + s  ites based on similar effective
ionic radii (IR) of the cation with varying coordination numbers (CNs) [29–31]. Moreover,
the main diffraction peak shifts toward a higher angle with the introduction of Eu ions,
as shown in Figure 2a. It implies that the replaced sample lattice characteristics and cell
volume are lowered to some amount, which is consistent with the shift of diffraction peaks,



which might be well-accepted based on Bragg’s law (2d sin θ = nλ) [32,33]. It verifies once
more that Eu ions with lower ionic radii are continually replacing potentially substitutable
ions. The XRD patterns of the BaYAl3O7:0.03Eu2+, xNd3      + (  x = 0.01, 0.02, 0.03, 0.04, 0.05)
nanophosphors obtained by the calcination at 600 °C are presented in Figure 2b. Compared
with Figure 2a, the positions of the diffraction peaks remain basically the same, which
indicates that the co-doping of Nd3+ i ons does not change the crystal phase of the BYAO
host. Based on the consideration of the effective i onic radii with different coordination
numbers [34], the co-doped rare-earth ion Nd3+ i s proposed to occupy the Ba2+/Y3   + s  ite in
the main lattice of the BAYO.

Figure 2. (a) The BYAO:xEu2+ (x = 0, 0.02, 0.03, 0.04, 0.05, 0.08) XRD patterns and the standard card.
(b) The XRD patterns of BaYAl3O7:0.03 Eu2+, xNd3      + (  x = 0.01, 0.02, 0.03, 0.04, 0.05) phosphors.

Since the chemical valence of Eu and Nd can greatly affect the luminescence perfor-
mance, it is crucial to determine the valence states of the Eu and Nd ions in the BYAO host.
The valence states of Eu and Nd were studied using XPS. As shown in Figure 3, the XPS
measurements exhibit binding energies corresponding to Ba 3d, Y 3d, Al 2p, O 1s, Eu 3d,
and Nd 3d [35–37]. Furthermore, as shown i n Figure 3e, the high-resolution (HR) XPS
depicts the binding energy of the Eu 3d (1125.09 eV) signal, which is consistent with that of
Eu2+ 3d5/2 [38–40]. The binding energy of Nd 3d peaks at 977.2 eV (Nd 3d5/2) and 1000.6 eV
(Nd 3d3/2) as can be seen in Figure 3f [41–46]. Figures 4a and 5a show scanning electron
microscopy (SEM) pictures of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3         +. The irreg-
ularities in the shape, size, and pores of these samples may be related to the irregular mass
flow and inhomogeneous temperature distribution of the samples during combustion [47].
The EDS of t he BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3          + p  hosphors i s displayed
in Figures 4b and 5b, and t he EDS i ntensity signals of Ba, Y, Al, O, Eu, and Nd are i n
good agreement with the chemical composition of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+,
0.02Nd3+ phosphors. Moreover, from the mapping analysis in Figures 4c and 5c, it is clearly
observed that Eu and Nd are uniformly distributed over the BYAO host.



Figure 3. (a) The XPS spectra of the BYAO:0.03 Eu2+, 0.02 Nd3          +. (b–f) The HR XPS spectra of Ba 3d,
Y 3d, Al 2p, Eu 3d, and Nd 3d.

Figure 4. ( a) The SEM i mage of the BYAO:0.03Eu2+ material. ( b) The EDS of the BYAO:0.03Eu2+

material. (c) The elemental distribution of the BYAO:Eu2+ material.



Figure 5. (a) The SEM image of the BYAO:0.03Eu2+, 0.02Nd3+ material. (b) The EDS of the BYAO:0.03Eu2+,
0.02Nd3+ m  aterial. (c) The elemental distribution of the BYAO:0.03Eu2+, 0.02Nd3         + m  aterial.

3.2. Photoluminescence and Afterglow Properties

Figure 6a,b display t he UV–vis absorption s pectra of t he BYAO:0.03Eu2+ and
BYAO:0.03Eu2+, 0.02Nd3          +. T he bandgap ( Eg) can be calculated on t he basis of the
following equation:

(αhν)2 = A(hν − Eg) (1)

hν is the photon energy, α is the absorption coefficient, Eg i s band gap energy (eV), and A
is a constant [40,48,49]. The insets show the experimental values (Eg), which are approxi-
mately 4.92 eV and 5.26 eV. The optical properties of the BYAO:Eu2+ and BYAO:Eu2+, Nd3     +

phosphors were analyzed by analyzing PLE and PL spectra. As shown in Figure 6c, the PLE
spectrum of BYAO:Eu2+, Nd3     + s  hows a broad absorption band centered at 365 nm, which
is mainly due to the 4f7→4f6    5d transition of Eu2+ i ons [50–53]. Under the 365 nm UV light
excitation, the PL spectrum of the BYAO:0.03Eu2+ (~497 nm) and BYAO:0.03Eu2+, 0.02Nd3         +

(~492 nm) shows the 4f65d→4f7       t ransitions of Eu2+ i ons [53–55]. Because of the relatively
small crystal-field splitting energy for Eu2+ ions in the BYAO host crystal, the light emission
from the BYAO:Eu2+ and BYAO:Eu2+, Nd3     + p  hosphors is considerably shorter wavelength,
peaking at ~500 nm, than the various Eu2+-doped phosphors [53]. The i ntensity of the
Eu2+ single-doped sample is higher than that of the Eu2+, Nd3     + c  o-doped samples, and
the emission spectrum is slightly blue-shifted after co-doping, indicating that there may
be energy storage in the co-doped samples during this process [13]. Furthermore, in the
Eu2+, Nd3+ co-doped samples, no emission characteristics of Nd3+ i ons were observed,
suggesting that Nd3+ i s not acting as a l uminescence center but may play the role of a
trapping center. To investigate the doping concentration effect on the optical properties of
the samples, BYAO:xEu2+ (x = 0, 0.02, 0.03, 0.04, 0.05, 0.08) phosphors were synthesized.
In Figure 7a, under the excitation of 365 nm, the PL spectra of the phosphors doped with
different concentrations of Eu2+ show that the optimum concentration is 0.03Eu2+. The



luminescence intensity is an increase of 29 times the original intensity. To further investigate
the effect of Nd3+ concentration, the typical experiment was performed for BYAO:0.03Eu2+,
xNd3+ ( x = 0.01–0.05). As seen i n Figure 7b, t he emission i ntensity reaches i ts highest
when the doping concentration is 0.02. Figure 7c depicts the coherent infrared energy (CIE)
chromaticity coordinate positions of the BYAO:0.03Eu2+, xNd3      + (  0–0.05) phosphors under
the excitation wavelength of 365 nm. With the increased Nd ion concentration, the emission
color gradually blue-shifted, and the corresponding CIE color coordinates are changed
from (0.151, 0.0.305) to (0.148, 0.216).

Figure 6. ( a,b) UV–vis absorption spectrum of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3         +.
The i nset shows the theoretical fit of the band gap. ( c) The emission spectra (λex = 365 nm) and
excitation spectra (λem = 496 nm) of the samples.

Figure 7. ( a,b) The emission spectra (λex = 365 nm) of the BYAO:xEu2+ (x = 0, 0.02, 0.03, 0.04, 0.05,
0.08) and BYAO:0.03Eu2+, xNd3      + (  x = 0.01, 0.02, 0.03, 0.04, 0.05). (c) CIE chromaticity diagram of the
BYAO:0.03Eu2+, xNd3+ (0–0.05) under the excitation of 365 nm ultraviolet light.

In addition, Figure 8a shows the luminescence decay curves of BYAO:0.03Eu2+ and
BYAO:0.03Eu2+, 0.02Nd3         + p  hosphors (λex = 365 nm). The decay curve can be well-fitted
with a second-order exponential function [56]:

I(t) = I 0 + A1exp(−t/τ1) + A2exp(−t/τ2)) (2)

where I 0 represents t he background constant, A1 and A2 are constants, and τ1 and τ2
represent the decay times for the fast and slow exponential components, respectively. The
average decay time τ* could be obtained using the following equation:

τ∗ = ( A1 · τ2            
1 + A2 · τ2         

2   ) /(A1      · τ1   + A2     · τ2   ) (3)



The average decay time τ* of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3         + p  hos-
phors is 850 ns and 1149 ns, respectively, which provides experimental evidence for the
presence of an energy t ransfer process between Eu2+ i ons and Nd3+ i ons [ 57]. T o f ur-
ther investigate the afterglow properties of phosphors, the afterglow decay curve of the
BYAO:0.03Eu2+, 0.02Nd3         + s  amples was measured. As shown in Figures 8b and 9, a bright
blue-green afterglow can be observed after exposing the BYAO:0.03Eu2+, 0.02Nd3         + p  hos-
phor to a 365 UV light for 5 min, and the afterglow time is more than 8 min, which shows
the potential application as a nighttime security marker. The afterglow curve can be fitted
by the double-exponential Equation (2). According to the above equation, τ1 and τ2 are
5.4 s and 51.3 s, respectively. Long afterglow decay occurs in two stages: slow decay and
quick decay. These quick decay processes appear first and dominate the intensity. Slow
decay processes take place later and result in long-term luminescence behavior [58,59].

Figure 8. ( a) The luminescence decay curves of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3         +

phosphors. ( b) Afterglow decay curve of the BYAO:0.03Eu2+, 0.02Nd3         + p  hosphor after exposure
to a 365 nm UV l ight f or 2 min. ( c) Concentration-dependent TL curves of t he BYAO:0.03Eu2+,
xNd3+ ( x = 0.01–0.05) excited for 5 min. ( d) TL spectrum of the BYAO:0.03Eu2+, 0.02Nd3+ and its
deconvolution into the two Gaussian components at 94 and 176 °C.

The l ong afterglow i s a result of t he gradual release of charge carriers t rapped i n
the material, with the afterglow duration and intensity depending on the concentration
and depth of the trapping centers. Shallow traps are adversely affected by stable charge
carriers, significantly reducing the duration of persistent luminescence. Conversely, charge
carriers captured by deep traps are difficult to release at room temperature, also adversely
impacting t he persistence of l uminescence [ 2]. T herefore, t o i nvestigate t he afterglow
process in detail, the trap information of the BYAO:0.03Eu2+, xNd3      + (  x = 0.01–0.05) samples
was analyzed using TL spectra, as shown i n Figure 8c. The samples were exposed t o
365 nm UV light pre-irradiation for 5 min at room temperature (30 °C), heating to 500 °C,



quickly cooling to 30 °C, and final TL measurement at a heating rate of 1 °C/s. With the
increase i n the concentration of Nd ions, the high-temperature peak gradually shifts to
higher temperatures, which means that the doping of Nd3+ i ons significantly increases the
defect levels. As shown in Figure 8d, the TL curve of BYAO:0.03Eu2+, 0.02Nd3         + c  onsists
of two broad bands with maxima at 94 °C and 176 °C, which correspond to the shallow
and deep t raps, respectively. The depth of t he t rap can be estimated by t he following
equation [60–62]:

E =
Tm

500
(4)

where E represents t he activation energy ( depth of t he t rap), Tm r epresents t he peak
temperature: f or the shallow trap, Tm = 94 °C; for the deep trap, Tm = 176 °C. Therefore,
the depths of the deep and shallow traps in BYAO:0.03Eu2+, 0.02Nd3         + a  re evaluated to be
0.73 eV and 0.9 eV, respectively.

Figure 9. Afterglow photographs of BYAO:0.03Eu2+, 0.02Nd3         + phosphor after exposure to the 365 nm
UV source for 5 min.

3.3. Mechanism for the Afterglow of the BYAO:Eu2+, Nd3    + Phosphor

When Nd3+ i ons replace Ba2+ i ons in the matrix, a positive charge center is generated
due to the need to maintain charge balance, t hat i s, a trap i s created. Figure 10 shows
the possible mechanism for the formation of efficient blue-green afterglow in Eu2+, Nd3     +

co-doped BYAO. When the UV photon excites a sample, electrons are excited from the
ground state to the excited state or conduction band (CB). The excited electrons will transit
back to the ground state and recombine with holes to emit light. The electrons in the CB
will become free electrons, and after the light irradiation stops, the free electrons in the CB
will partly relax to the excited state and subsequently transit back to the ground state and
recombine with holes to luminesce. Another part of the free electrons in the CB will be
captured by the shallow and deep traps. The electrons that enter the shallow trap slowly
escape due to thermal excitation and relax to the CB. Relaxation to the CB of part of the
free electrons by the trap then occurs, and they are then captured, and part of the free
electron relaxation to the excited state takes place, whereupon they transition back to the
ground state and recombine with holes, resulting in afterglow luminescence. Electrons in
deep traps also slowly escape and relax into shallow traps due to thermal excitation. The
electrons captured in the deep traps do not escape directly into the CB at room temperature,
and so the deep trap has a storage function.



Figure 10. Schematic afterglow mechanism in the BYAO:Eu2+, Nd3     + phosphor.

3.4. Anti-Counterfeiting Application

To further investigate the anti-counterfeiting properties of phosphor, we prepared anti-
counterfeiting inks by mixing phosphor with polyacrylic acid and then printed four-leaf
clover and snowflake patterns with the screen printing technique. As shown in Figure 11a,b,
BYAO/ink is almost invisible under daylight, and clear patterns can be seen under the
365 nm UV excitation. As shown in Figure 11c,d, the pattern printed by BYAO:0.03Eu2+,
0.02Nd3+/ ink can still be seen clearly after the UV irradiation is turned off. In addition,
the afterglow effect can still be seen after the UV excitation has stopped for three minutes.
From the above findings, we suggested that the Eu2+ i ons and Nd3+ i ons activating the
BYAO ink are anticipated for high-level anti-counterfeiting applications.

Figure 1 1. B  YAO:0.03Eu3+/ink f or printing ( a) f our-leaf c lover a nd ( b) s nowflake patterns;
BYAO:0.03Eu2+, 0.02Nd3         +/ ink for printing (c) four-leaf clover and (d) snowflake patterns.



4. Conclusions

In summary, a series of BYAO:Eu2+ and BYAO:Eu2+, Nd3     + p  hosphors was prepared
via the combustion method at a reaction temperature of 600 °C. The Eu2+ i ons and Nd3+

ions were successfully doped into the BYAO host, as was verified by XRD, EDS, and XPS
analysis. The emission bands of BYAO:Eu2+ and BYAO:Eu2+, Nd3     + a  re centered at 497 and
492 nm, respectively, which are attributed to the 4f65d→4f7       t ransition of Eu2+ i ons. The
fluorescence lifetimes of the BYAO:0.03Eu2+ and BYAO:0.03Eu2+, 0.02Nd3         + a  re 850 ns and
1149 ns, respectively. I n addition, Eu2+ i ons as the emission center and co-doped Nd3+

ions as the trap center can improve the afterglow performance. The afterglow duration of
the BYAO:0.03Eu2+, 0.02Nd3          + p  hosphor can reach 8 min. Finally, a transparent ink was
prepared by mixing fluorescent powder with ethanol and polyacrylic acid to demonstrate
the potential of fluorescent powder for anti-counterfeiting applications.
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