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Carbon n anotubes ( CNTs) e nable l arge e lectric fi eld e nhancement f or a n e xtremely b road

bandwidth spanning from t he optical domain down t o static fields. This i s due t o t heir high aspect

ratio, s mall t ip r adius, a nd high s tructural s tability. CNTs t herefore r epresent a n i deal model-

system for t he i nvestigation of nonlinear and strong-field phenomena. In t his paper, we extend t he

range of optical-field-emission materials f rom metal nanostructures t o CNTs. Quiver-quenched

optical-field-emission ( i.e., t he t ransition t o a s ub-cycle r egime) i s observed f or CNTs t ips i n a

short-wavelength l aser field of 820 nm t hat requires a mid-infrared excitation field of conventional

metal t ips emitters. This special property relies on t he ultrasmall t ips radius (�1 nm) and t he high

optical-field enhancement (�21.6) properties of CNTs. This study suggests that CNTs are excellent

candidates for optically driven ultrafast electron sources with both high spatial and high t emporal

coherence. They also provide more freedom for the manipulation and control of electron dynamics

at t he a ttosecond t imescale, which e xtends t he b andwidth o f l ight-wave e lectronic d evices.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5003004]

Optical-field-emission from nanoscale solids are of fun-

damental i nterest f or n ext-generation u ltrafast e lectron-

microscopy and spectroscopy,1 compact coherent x-ray sour-

ces,2 and attosecond research, i n general.3,4 The attraction of

nanostructures r elies on t wo closely connected f eatures: t he

local g eometrically mediated field e nhancement a nd s ub-

wavelength c onfinement o f o ptical-fields.5,6 L ocal fi eld

enhancement f acilitates access t o t he optical-field-emission

regime,7 whereas s patial l ocalization h as t he p otential t o

generate optical-field-driven electron dynamics exclusive t o

nanostructures.5,8,9 In t he past decade, a few research groups

have successfully accessed t his regime employing nanoscale

metal t ips, a nd n ear-infrared, o r mid-infrared p ulses.10,11

More r ecently, i ncreasing attention has been paid t o certain

features t hat originate i n t he sub-wavelength spatial confine-

ment o f o ptical-fields.5,12 S pecially, a s ub-cycle e lectron

dynamic r egime has been discovered f or t he mid-infrared

field ( > 2 lm), i n w hich t he fi eld l ocalization s cale

approaches the electron’s quiver amplitude.5 Such conditions

enable i nteresting optically driven electron-dynamics, which

involve quiver-quenched optical-field-emission5 a nd direc-

tional emission.13 However, r esearch i nto t his r egime i n t he

short-wavelength field (visible t o near-infrared) i s still being

conducted because i t i s i mportant f or t he attosecond preci-

sion control of electron beams.6,14

The underlying principles of optical-field-driven have

been s tudied widely. They consist of t wo i ndividual s teps,

the l iberation of electrons f rom a solid, and t he subsequent

electron p ropagation a nd a cceleration within t he i ncident

strong optical-field.15 The first step i s g overned b y t he

Keldysh adiabaticity parameter16 c ¼ x=xt, where xt ¼ eF=ffiffiffiffiffiffiffiffiffiffi
2mU
p

characterizes the photon-driven (quantum, c > 1) and

field-driven (classical, c < 1) regimes; x i s t he circular opti-

cal frequency, and F i s the localized field enhanced from t he

optical-field F0 due t o t he enhancement f actor b, which i s

achieved t hrough t he engineered t ip-sharpness with a radius

of curvature, R. The second step i s characterized by another

dimensionless adiabaticity parameter5 (d ¼ lF=lq) that relates

the ( 1=e)-decay l ength l F of t he optical-field, which s cales

with the emitting tip-radius R, and the electron quiver ampli-

tude l q ¼ eF=mx2. I n an optical cycle, t hree different elec-

tron d ynamics a re e xpected t o o ccur, d epending o n t he

emitting phase [see Figs. 1(a) and 1(b)]. For d > 1, t he bulk

of t he electron population quiver i n a nearly homogeneous

field occurs during multiple optical cycles i n t he usual way,

while t he electrons occasionally scatter off t he emitting sur-

face. For d < 1, a l arge proportion of t he emitted electrons

rapidly e scape f rom t he t ip-enhanced field within a t ime-

frame much s horter t han a n optical c ycle. I t i s c lear t hat

FIG. 1 . (a) S chematic d iagram o f o ptical-field-driven f rom a CNT t ip,

including t hree possible electron-trajectories, 1: sub-cycle, 2: quiver, and 3:

rescatter. ( b) Phase-dependent electron t rajectories, 1: s ub-cycle i n earlier

phase, 2: quiver i n middle phase, and 3: rescatter i n l ater phase, t he t ransi-

tions between two adjacent dynamics moves with d.
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b; R;x; and F0 a re t he f our key-parameters t hat determine

the mechanism o f b oth s teps, c ritically s trengthening t he

dominant e mission process. To r each i nto t he s trong-field

regime and s ubcycle r egime, higher b; F0, and l ower R; x
values are required.

High b and l ow R are r eadily f acilitated using carbon

nanotubes ( CNTs) a s t he e lectron s ource. The CNT t ip

radius-of-curvature can easily be s ynthetized down t o s ub-

nanometers. At t his scale, t he electrical conductivity can be

orders of magnitude higher than its equivalently sized metal-

lic counterpart—even for the most conductive of metals.17 In

addition, the excellent thermal and mechanical properties are

retained, w hich e nsure t he e mitter’s r obustness w hen

exposed t o t he a ggressive e mission-conditions a nd a ssoci-

ated high fields.18 These f actors make carbon nanotubes a

very promising l ight-matter i nteraction material. Benefitting

from t hese unique properties, i n our previous work, t he opti-

cal-field-emission h as b een a ccessed f rom CNTs ( with a 
radius of �1 nm) a t 410 nm l aser with a narrow e lectron

energy spread of 0.25 eV. In this paper, we attempt t o access

the q uiver-quenched o ptical-field-emission ( i.e., s ub-cycle

regime) at 820 nm l aser, which i s much shorter t hat required

for conventional metal tips.5

Vertically aligned CNT cluster arrays [ Fig. 2(a)] were

grown on a highly doped n-type silicon chip using chemical

vapor deposition ( CVD).19 The s ilicon s ubstrate was first

coated with a n Al ( 10 nm)/Fe ( 1 nm) multilayer c atalyst

deposited via s puttering. The s ubstrate was t hen heated t o

900 �C, at 10�2 mbar. Acetylene was chosen as t he carbon

feedstock and i ntroduced t o t he deposition chamber after t he

temperature had r eached 900 �C. The growth process l asted

for 1 min. After t he g rowth p rocess, t he s amples were

annealed i n hydrogen at 1000 �C f or 2 h t o r emove amor-

phous carbon deposits and other impurities.

The morphology and structure of t he CNT sample was

analyzed u sing a s canning e lectron microscope ( SEM,

Hitachi S-4800) and a high-resolution t ransmission electron

microscope ( HRTEM, FEI Tecnai F20). The diameters of

the CNTs were determined based on t heir r adial breathing

mode f requency [ xRBM¼ 248/d ( cm�1/nm)] using Raman

spectroscopy.20 The pristine CNTs were dispersed i n abso-

lute a lcohol v ia u ltrasonication a nd t hen d rop t ransferred

onto 3 00 nm S iO2/Si s ubstrates. R aman s pectra w ere

acquired using He-Ne l aser ( 632.8 nm) e xcitation, a nd t he

data were recorded using a confocal micro-Raman spectrom-

eter ( HORIBA J obin Yvon, LabRam HR 800). Ultraviolet

Photoelectron Spectroscopy (UPS, AXIS ULTRA DLD) was

used t o determine work f unctions. A He discharge-source

(21.22 eV) was used with a resolution of �0.2 eV.

The experimental s etup i s s hown i n Fig. S3. The l aser

light (820 nm, 100 fs, and 80 MHz) hits t he CNT t ip from t he

side a t a n early 9 0� a ngle. I t was f ocused t o a 2 .50 lm

(FWHM) spot at one CNT cluster apex. The l aser beam was

focused by scanning t he emission current. The l ight was l ine-

arly polarized, and t he polarization angle was controlled via a

half-wave plate. The electron emission experiments have been

done i n a high-vacuum chamber ( 10�7 Torr). The anode was

placed 400 lm away from the cathode using a thick mica insu-

lating s pacer. A Keithley 2 400 s ource-measurement u nit

(SMU) was used t o bias t he anode with voltages up t o 200 V

and measure t he a node c urrent. The c urrent-measurements

presented in the main text are those recorded at the anode.

The growth process resulted in 10 lm tall CNT clusters of

defined areal patterns—see Fig. 2(a). Although t he as-grown

clusters contain many nanotubes, t he growth kinetic was such

that a f ew i ndividual t ubes p rotruded ( repeatedly b etween

growths) f rom t hese clusters t o produce a f ew i solated nano-

scopic apexes [ see Fig. 2(b)], which are believed t o be t he

main e mission s ites t o f acilitate t he e xtremely h igh field-

enhancement t here. The CNTs have a t ip radius of �1 nm, as

shown in transmission electron images [see Fig. 2(c)] and con-

firmed by t heir Raman spectrum [see Fig. 2(d)]. The radius of

the CNT was considered to be 1 nm. The work function of the

CNTs was measured to be �4.4 eV [see Fig. 2(e)].

To describe the electron dynamics, the field-enhancement

factor i s r equired t o c alculate t he e nhanced l ocal fi eld.

Therefore, t he emission current as a f unction of l aser power

(I-P curves) has been measured and recorded using a double-

logarithmic scale [see Fig. 3(a)]. For a low emission current, a

nonlinear l aser-power ( and c orresponding i ntensity) d epen-

dence i s o bserved, which a pproximately f ollows t he fifth-

order power l aw ( dashed l ine) of a multiphoton process.14,21

However, t he measured work f unction ( U) o f t he CNT

FIG. 2. (a) SEM image of a l arge area CNTs array. The scale-bar is 10 l m.

(b) A high-magnification SEM image of the apex. The scale bar is 1 l m. (c)

HRTEM image of a typical CNT. The scale bar is 3 nm. (d) Raman spectrum

of a t ypical as-grown CNT sample. ( e) Work f unction measurement of as-

grown CNTs.

FIG. 3. ( a) Emission current as a function of laser power, biased with 50 V. For

low-power r ange, a fifth power i s observed, while a l ower-power f unction i s

obtained f or t he higher power r ange. ( b) Fowler–Nordheim ( FN) fitting of t he

optically driven emission-current, with a field enhancement factor (b) of�21.6.
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(�4.4 eV) requires only three photons (4.8 eV) for photoemis-

sion. The enhanced emission-nonlinearity i ndicates t hat elec-

trons originate almost exclusively f rom t he sharp CNT t ips.7

Around 7 mW ( and a n i ncident p eak i ntensity o f a bout

18 GW/cm2, and a l aser field of about 0.81 GV/m), t he curve

deviates from this behavior and changes to a lower power law

dependence. This r epresents a t ransition f rom multiphoton

photoemission t o o ptical-field-emission. I n t he q uasi-static

optical-field-emission r egime, t he e mission current approxi-

mately f ollows t he s tatic field-emission r ate, which i s given

by cycle-averaged Fowler-Nordheim equation [ fitting shown

in Fig. 3(a)]:22

I ¼ A bF0ð Þ2

U
exp

�BU
3
2

bF0

 !
; (1)

where I i s t he emission current, A¼ 1.56� 10�6 A V�2 eV,

B¼ 6.83� 109 V eV�3/2 V m�1, b i s a field enhancement

factor,23 U is the work function, and F0 i s incident laser field.

The FN plot derived from the above current-field curve dem-

onstrates a high degree of l inearity, as s hown i n Fig. 2(c),

which further confirms t hat t he dominant emission has field-

driven behavior. Thus, t he field enhancement f actor of bare

CNTs (b) can be calculated from t he slope (S) of t he l inear-

ized FN data, using the transformed form of Eq. (1)

ln
I

F0
2 

� �
¼ ln

Ab2

/

 !
� B/

3
2

b

 !   
1   

F    0

� �
; (2)

and thus

S ¼ �BU
3
2

b
: (3)

The calculated b was �21.6. Accordingly, the calculated c at

7 mW i s �0.96. This c onfirms our c onclusion of a field-

driven process. Thus, both t he cycle-averaged FN-fitting and

calculated Keldysh c, fully confirm that the emission is oper-

ating i n t he o ptical-field-driven t unneling r egime a t 7 –15

mW for 820 nm excitation.

As mentioned earlier, t he optical-field s trength consti-

tutes one of t he control parameters f or t he t ransition f rom

quiver t o s ub-cycle e lectron-dynamics. T he d -parameter

scales proportionally t o F�1 at fixed wavelengths. However,

because t he experimentally accessible i ntensity-range i s lim-

ited by damage thresholds, access to the sub-cycle regime by

increasing F is expected to be difficult, especially for a short-

wavelength excitation field. Fortunately, CNT emitters stud-

ied i n this work have a much higher b and a much smaller R
compared t o conventional metal t ips, which facilitate access

into a s ub-cycle r egime. As s hown i n Fig. 4(a) ( up panel),

the calculated d decreased f rom 0.78 t o 0.53 with t he l aser

power i ncreasing from 7 mW t o 15 mW. This i ndicates t hat

optical-field-emission h as c learly e ntered t he s ub-cycle

regime for the present measurement range.

To f urther s trengthen o ur s peculation, t he e lectron

energy spectra at different l aser-intensities were measured

using t he r etarding field method.5 As depicted i n Fig. 4(b)

(dotted l ine), t he c utoff k inetic e nergies f or t he p resent

CNT-based u ltrafast e lectron s ource i ncreases with l aser

intensity. To examine t his behavior f urther, we computed

the kinetic-energy s pectrum using experimentally derived

parameters i n a t wo-step model a dapted t o l ocalized

optical-fields (see supplementary materials for details). The

simulation i ncludes a simplified FN t unneling model ( first

step—electron t unneling) a nd t he i nteraction of t he e lec-

trons with a s trongly l ocalized field near t he t ip ( second

step—electron propagation). The r esults are shown i n Fig.

4(b) ( solid l ine). I n t his s tudy, t he high e nergy e lectrons

induced t hrough r escattering5 were not c onsidered i n t he

simulation because t he backscattering e fficiency of e lec-

trons on t he carbon s urface was very l ow.24 Good agree-

ment with t he e xperimental d ata was o btained, which

strongly s upports o ur s ub-cycle c onclusion. I n t he s ub-

cycle r egime, t he cutoff energies, as r ecorded i n Fig. 4(a)

(bottom panel), display a l inear dependency on t he l aser

field a nd g reatly d eviate f rom t he 2 Up ( ponderomotive

potential, Up¼ e2F2 =4mx2       ) f or a homogeneous field a nd

the same driving field. This strongly suggests t hat t he elec-

tron e mission o riginates f rom a s trongly l ocalized field.

This c onclusion i s a lso c onsistent with previous findings

reported f or mid-infrared field.25 I n addition, we simulated

the electron dynamics with a fixed l ocal ( enhanced) field,

tip r adius, and wavelength. We f ound t hat, f or t he present

electron e  mission s  ystem, m  ost t  rajectories d  isplay

sub-cycle f eatures ( red l ines) and minimal quiver motion

(blue l ines). I n a ddition, back a cceleration ( yellow l ines)

occurs t hroughout a reduced r ange of emission phases [see

Fig. 5(a)]. For comparison, we also simulated t he electron

FIG. 4. (a) Spatial adiabaticity parameter d as a function of the incident laser

field used i n t he experiments ( upper panel). Cutoff kinetic energies versus

incident laser field (bottom panel) for emission from CNT in the experiments

(dots) shows a l inear behavior and deviation f rom t hat of a homogeneous

field ( 2Up, dashed l ine). ( b) Experimental ( dots, E) a nd s imulated ( solid

lines, T) kinetic energy distributions of emitted electrons f rom CNTs f or

increasing power and a wavelength of 820 nm.

FIG. 5. Simulated electron t rajectories f or five e mission phases ( �0.2 p,

�0.1 p, 0 p, 0.1 p, 0.2 p), from a 1 nm tip and 10 nm tip.
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dynamics with a t ip radius of 10 nm for t he same l ocal field

and wavelength [ see Fig. 5(b)]. This produces much stron-

ger quiver-motions.

In c onclusion, t he s ub-cycle r egime f or o ptical-field-

emission i s s uccessfully a ccessed with a much s horter

excitation-field wavelength of 820 nm f rom CNT t ips with

1 nm radius. This required mid-infrared pulses i n previously

reported studies and has been shown to benefit from the high

field e nhancement f actor a nd s ub-nano n ear-field d ecay-

length. For t he present conditions, t he sub-cycle regime can

be accessed with shorter visible-light excitation. I t i s hoped

that f urther s tudies ( at extreme conditions) of s ingle CNT

emitters and plasmonically active samples will further clarify

the u nderlying e lectron e mission p rocesses. Our fi ndings

make i t p ossible t o u se h igh s patially c oherent e lectron-

sources with high temporal-resolution for time-resolved elec-

tron-microscopy a nd d iffraction, a nd f ree-electron l asers.

They may a lso open doors f or “ light-wave e lectronics” a t

extended bandwidths.

See supplementary material for complete simulation.
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