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Fig. 3

Mechanisms of PFE , MPP and ATP. (a) Relationship between photoelectron emission and power of gold tip with curvature

radius of 20 nm under laser irradiation where bias voltage of 880 V corresponds to PFE process and bias voltage of 0 V
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corresponds to MPP process"™; (b) relationship between photoelectron emissivity and bias at different optical powers™; (c) PFE

photoelectron spectroscopy™”; (d) MPP photoelectron spectroscopy'™; (e) ATP photoelectron spectroscopy™; (f) photoelectron

emissivity-light intensity curve
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Table 1 Electron coherence under different photoelectron emission mechanisms

Photoemission mechanism Electron pulse width Electron energy spread Virtual source size Coherence
PFE fs Small Small Largest
MPP fs Large Large Larger
ATP fs Larger Larger Large
OFE sub-fs Largest Largest Small
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Fig. 5

OFE of one dimensional carbon tube. (a) Differential conductance curves of OFE through carbon tube™; (b) photoelectron

spectra of OFE through carbon tube""; (c) schematics of OFE through carbon tube and valence band"”; (d) CEP dependence of
OFE current™
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photoelectron emission spectra”™”’
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Table 2 Influence of different factors on electron coherence

Factor Electron energy spread

Virtual source size Coherence

Laser power Positive correlation

Laser wavelength Positive correlation
Radius of curvature Positive correlation
Quantized level Negative correlation

Thermal effect Positive correlation

Positive correlation Negative correlation

Positive correlation Negative correlation
Positive correlation Negative correlation
Positive correlation

Negative correlation
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Fig. 7 Low energy electron holography. (a) Schematic of low-energy electron holography and graphene topography and detailed

(4],

topography reconstructed from hologram™”; (b) DNA molecular hologram and its reconstructed topography™’; (c) protein

molecular hologram and its reconstructed topography™”’
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Fig. 8 Ultrafast low-energy electron point projection imaging and its application in ultrafast charge transport characterization.

(a) Schematic of ultrafast low-energy electron point projection imaging"®; (b) schematics of p-i-n InP nanowire structure and

point projection imaging"”; (c) carrier transient response curve in p-i-n InP nanowires'”; (d) schematic of laser focusing through

propagating plasma focusing based on grating structure and schematic of InP nanowire point projection imaging "”; (e) InP

nanowire point projection topography"”; (f) photocurrent-based laser autocorrelation interference measurement”
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Fig. 9 Application of ultrafast low-energy electron point projection imaging in study of ultrafast charge transport dynamics. (a) Ultrafast

point projection imaging of double-hole nanoantenna structure™’; (b) schematic of ultrafast characterization of electron energy

distribution in nanoantenna structure’”; (c) point projection imaging of nanoantenna at zero pulse delay"”; (d) transient variation

of electron energy at left area of nanoantenna’; (e) transient variation of electron energy at middle area of nanoantenna
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Fig. 10 Ultrafast low-energy electron holography. (a) Experimental principle of photoelectron emission and electron interference™;

(b) tungsten tip field emission interference fringes before and after laser excitation™; (c) schematic of ultrafast electron

371,

holography™; (d) pulse autocorrelation interferometry based on emission current™; (e) gold tip photoemission interference

fringes"™; (f) tungsten tip photoemission interference fringes"”
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Abstract

Significance Solar energy utilization is crucial for all life on earth. For example, photosynthesis in green plants, which is vital for
humans and other living creatures to have access to food, depends on solar energy. Furthermore, solar energy is the cleanest energy
source and has various other applications, including solar—electric energy conversion through photovoltaics and solar—chemical energy
through photosynthesis and photocatalysis. However, the conversion efficiency is currently low and needs to be improved.
Therefore, the study of ultrafast dynamic processes at the atomic scale, such as carrier excitation, photoinduced charge separation,
charge transfer, and energy transfer, is crucial for revealing the underlying physical mechanisms of photosynthesis, photovoltaic, and
photocatalysis, which is significant for improving the conversion efficiency of solar energy.

Ultrafast electron microscopy is required to realize the high temporal-spatial resolution characterization of ultrafast dynamic
processes. The ultrafast transmission electron microscope (TEM) and the ultrafast scanning electron microscope (SEM) have realized
the real space observation of ultrafast dynamic processes at the nanoscale and atomic levels. These processes include atomic diffusion,
chemical reaction, phase change, and biological macromolecular dynamics. Ultrafast TEM and ultrafast SEM typically use high-
energy (20 keV) electron beams for imaging. However, owing to the small scattering cross-section of high-energy electrons, the
detection sensitivity to the weak local electric or optical field of the sample is low. Therefore, the transient charge transport process is
challenging to characterize. In contrast, low-energy electrons with energy less than 500 eV have large scattering cross-section and
scattering deflection angle for the weak local electric field in the sample and transient light field on the surface of nanostructures.
Moreover, characterization with spatial resolution in the order of 107" m can be achieved via electron holography. Therefore, when
combined with ultrafast temporal-resolution technology, the low-energy electron holography is expected to characterize the local
electromagnetic field distribution and charge transport at the atomic level.

Point electron source projection microscope (referred to as “point projection”) is the simplest device to realize low-energy electron
holography. By employing the laser-pumped ultrafast electron source, ultrafast low-energy electron holography can be achieved.
Because matching the complex electron optical system is not needed, there is no aberration. The spatial resolution mainly depends on
the electron source coherence. Therefore, an ultrafast coherent electron source is required to achieve ultrafast high spatial-resolution
holography. In the past few years, many mechanisms to generate ultrafast electrons are discovered, including photon-assisted field
emission (PFE), multiphoton photoemission (MPP), above-threshold photoemission (ATP), and optical field emission (OFE). Based
on these mechanisms, ultrafast coherent electron sources have been built, and high temporal-spatial resolution holography has been

achieved. Therefore, the current research is essential to guide the future development of this field more rationally.

Progress First, the fundamental mechanism of ultrafast electron sources is described in detail, and their coherence is discussed.
The ultrafast electron source can be realized via laser pulse-modulated field emission. Photoelectron-emission mechanisms, including

PFE, MPP, ATP, and OFE, generate ultrafast electron emission, which can achieve femtosecond or even up to sub-femtosecond
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temporal resolution. Among these mechanisms, the electrons emitted under the PFE mechanism have a low-energy dispersion
equivalent to the static field emission (Table 1), resulting to high coherence. Second, low-dimensional materials, such as one-
dimension carbon nanotubes (Fig. 5) and zero-dimension quantum dots, have atomic-scale curvature radii and discrete energy levels
induced via quantum confinement effect, enabling the high-coherent emitted electrons. Then, the influence of laser power, laser
wavelength, radius of curvature, and discrete energy levels on electron source coherence is summarized, as shown in Table 2.
Lastly, the development of static and ultrafast low-energy electron holography is introduced. Furthermore, based on high-coherent
tungsten tip electron sources, static holographic imaging of single protein molecule, single DNA molecule, graphene lattice, and sub-
nanometer scale charge state can be achieved. Using ultrafast electron sources, the sub-10 fs temporal resolution characterization of
the ultrafast dynamic process of photogenerated carriers and nanogap charge transfer in semiconductor nanowires can be realized.
However, the spatial resolution of electron holography can only reach several nanometers, as shown in Fig. 10, much larger than that
in the static cases. The main reason is that the thermal effect, photon energy mismatch, and strong light field acceleration caused by

femtosecond laser weaken the electron source coherence, reducing the spatial resolution of the ultrafast holography.

Conclusions and Prospects In conclusion, further improvement of ultrafast electron source coherence based on traditional metal
nanotip is challenging owing to its physical property limitation. In contrast, low-dimensional nanomaterial electron sources, such as
electron source based on carbon nanotubes, have atomic-scale emission sites and quantized discrete energy levels, which is an
important basis for breaking the coherence bottleneck. Additionally, carbon nanotubes have rich carbon-chiral structures and cutting-
edge quantum structures, bringing more regulatory dimensions for the optimal design of high-performance electronic sources. In the
future, we will develop the optimal carbon tube emission structure by combining the atomic-scale material design based on the first
principle and the “bottom-up” atomic manufacturing technology. This structure is expected to achieve an ultrafast electron source
close to the uncertainty principle limit and promote the development of the atomic resolution of ultrafast electron holographic imaging
technology.

Key words holography; electron holography; low-energy electron imaging; ultrafast electron source; coherent electron source; field

emission; charge transport ultrafast dynamics
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